TY - JOUR A1 - Rauch, Florian A1 - Fuchs, Sonja A1 - Friedrich, Alexandra A1 - Sieh, Daniel A1 - Krummenacher, Ivo A1 - Braunschweig, Holger A1 - Finze, Maik A1 - Marder, Todd B. T1 - Highly Stable, Readily Reducible, Fluorescent, Trifluoromethylated 9‐Borafluorenes JF - Chemistry – A European Journal N2 - Three different perfluoroalkylated borafluorenes (\(^{F}\)Bf) were prepared and their electronic and photophysical properties were investigated. The systems have four trifluoromethyl moieties on the borafluorene moiety as well as two trifluoromethyl groups at the ortho positions of their exo‐aryl moieties. They differ with regard to the para substituents on their exo‐aryl moieties, being a proton \(^{F}\)Xyl\(^{F}\)Bf, \(^{F}\)Xyl: 2,6‐bis(trifluoromethyl)phenyl), a trifluoromethyl group (\(^{F}\)Mes\(^{F}\)Bf, \(^{F}\)Mes: 2,4,6‐tris(trifluoromethyl)phenyl) or a dimethylamino group (p‐NMe\(_{2}\)‐\(^{F}\)Xyl\(^{F}\)Bf, p‐NMe\(_{2}\)‐\(^{F}\)Xyl: 4‐(dimethylamino)‐2,6‐bis(trifluoromethyl)phenyl), respectively. All derivatives exhibit extraordinarily low reduction potentials, comparable to those of perylenediimides. The most electron‐deficient derivative \(^{F}\)Mes\(^{F}\)Bf was also chemically reduced and its radical anion isolated and characterized. Furthermore, all compounds exhibit very long fluorescent lifetimes of about 250 ns up to 1.6 μs; however, the underlying mechanisms responsible for this differ. The donor‐substituted derivative p‐NMe\(_{2}\)‐\(^{F}\)Xyl\(^{F}\)Bf exhibits thermally activated delayed fluorescence (TADF) from a charge‐transfer (CT) state, whereas the \(^{F}\)Mes\(^{F}\)Bf and FXylFBf borafluorenes exhibit only weakly allowed locally excited (LE) transitions due to their symmetry and low transition‐dipole moments. KW - borafluorenes KW - boron KW - EPR spectroscopy KW - fluorescence KW - heterocycles Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218390 VL - 26 IS - 56 SP - 12794 EP - 12808 ER - TY - JOUR A1 - Schorr, Fabian A1 - Schopper, Nils A1 - Riensch, Nicolas A1 - Fantuzzi, Felipe A1 - Neder, Marco A1 - Dewhurst, Rian D. A1 - Thiess, Thorsten A1 - Brückner, Tobias A1 - Hammond, Kai A1 - Helten, Holger A1 - Finze, Maik A1 - Braunschweig, Holger T1 - Controlled Synthesis of Oligomers Containing Main-Chain B(sp\(^{2}\))-B(sp\(^{2}\)) Bonds JF - Chemistry—A European Journal N2 - A number of novel alkynyl-functionalized diarylbis(dimethylamino)diboranes(4) are prepared by salt metathesis, and the appended alkynyl groups are subjected to hydroboration. Their reactions with monohydroboranes lead to discrete boryl-appended diborane(4) species, while dihydroboranes induce their catenation to oligomeric species, the first known examples of well-characterized macromolecular species with B−B bonds. The oligomeric species were found to comprise up to ten repeat units and are soluble in common organic solvents. Some of the oligomeric species have good air stability and all were characterized by NMR and vibrational spectroscopy and size-exclusion chromatography techniques. KW - oligomerization KW - boron KW - catenation KW - diborane KW - hydroboration Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257274 VL - 27 IS - 64 ER - TY - JOUR A1 - Berger, Sarina M. A1 - Rühe, Jessica A1 - Schwarzmann, Johannes A1 - Phillipps, Alexandra A1 - Richard, Ann-Katrin A1 - Ferger, Matthias A1 - Krummenacher, Ivo A1 - Tumir, Lidija-Marija A1 - Ban, Željka A1 - Crnolatac, Ivo A1 - Majhen, Dragomira A1 - Barišić, Ivan A1 - Piantanida, Ivo A1 - Schleier, Domenik A1 - Griesbeck, Stefanie A1 - Friedrich, Alexandra A1 - Braunschweig, Holger A1 - Marder, Todd B. T1 - Bithiophene-Cored, mono-, bis-, and tris-(Trimethylammonium)-Substituted, bis-Triarylborane Chromophores: Effect of the Number and Position of Charges on Cell Imaging and DNA/RNA Sensing JF - Chemistry—A European Journal N2 - The synthesis, photophysical, and electrochemical properties of selectively mono-, bis- and tris-dimethylamino- and trimethylammonium-substituted bis-triarylborane bithiophene chromophores are presented along with the water solubility and singlet oxygen sensitizing efficiency of the cationic compounds Cat\(^{1+}\), Cat\(^{2+}\), Cat(i)\(^{2+}\), and Cat\(^{3+}\). Comparison with the mono-triarylboranes reveals the large influence of the bridging unit on the properties of the bis-triarylboranes, especially those of the cationic compounds. Based on these preliminary investigations, the interactions of Cat\(^{1+}\), Cat\(^{2+}\), Cat(i)\(^{2+}\), and Cat\(^{3+}\) with DNA, RNA, and DNApore were investigated in buffered solutions. The same compounds were investigated for their ability to enter and localize within organelles of human lung carcinoma (A549) and normal lung (WI38) cells showing that not only the number of charges but also their distribution over the chromophore influences interactions and staining properties. KW - singlet oxygen KW - boron KW - bioimaging KW - luminescence KW - nucleic acid Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256963 VL - 27 IS - 56 ER - TY - JOUR A1 - Huang, Mingming A1 - Hu, Jiefeng A1 - Krummenacher, Ivo A1 - Friedrich, Alexandra A1 - Braunschweig, Holger A1 - Westcott, Stephen A. A1 - Radius, Udo A1 - Marder, Todd B. T1 - Base-Mediated Radical Borylation of Alkyl Sulfones JF - Chemistry—A European Journal N2 - A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B\(_{2}\)neop\(_{2}\)), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates. KW - boron KW - boronate KW - boronic acid KW - metal-free KW - radical Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257281 VL - 28 IS - 3 ER - TY - JOUR A1 - Gärtner, Annalena A1 - Marek, Matthäus A1 - Arrowsmith, Merle A1 - Auerhammer, Dominic A1 - Radacki, Krzysztof A1 - Prieschl, Dominic A1 - Dewhurst, Rian D. A1 - Braunschweig, Holger T1 - Boron- versus Nitrogen-Centered Nucleophilic Reactivity of (Cyano)hydroboryl Anions: Synthesis of Cyano(hydro)organoboranes and 2-Aza-1,4-diborabutatrienes JF - Chemistry—A European Journal N2 - Cyclic alkyl(amino)carbene-stabilized (cyano)hydroboryl anions were synthesized by deprotonation of (cyano)dihydroborane precursors. While they display boron-centered nucleophilic reactivity towards organohalides, generating fully unsymmetrically substituted cyano(hydro)organoboranes, they show cyano-nitrogen-centered nucleophilic reactivity towards haloboranes, resulting in the formation of hitherto unknown linear 2-aza-1,4-diborabutatrienes. KW - nucleophile KW - boron KW - boryl anion KW - cumulene Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256853 VL - 27 IS - 37 ER - TY - JOUR A1 - Huang, Zhenguo A1 - Wang, Suning A1 - Dewhurst, Rian D. A1 - Ignat'ev, Nikolai V. A1 - Finze, Maik A1 - Braunschweig, Holger T1 - Boron: Its Role in Energy‐Related Processes and Applications JF - Angewandte Chemie International Edition N2 - Boron's unique position in the Periodic Table, that is, at the apex of the line separating metals and nonmetals, makes it highly versatile in chemical reactions and applications. Contemporary demand for renewable and clean energy as well as energy‐efficient products has seen boron playing key roles in energy‐related research, such as 1) activating and synthesizing energy‐rich small molecules, 2) storing chemical and electrical energy, and 3) converting electrical energy into light. These applications are fundamentally associated with boron's unique characteristics, such as its electron‐deficiency and the availability of an unoccupied p orbital, which allow the formation of a myriad of compounds with a wide range of chemical and physical properties. For example, boron's ability to achieve a full octet of electrons with four covalent bonds and a negative charge has led to the synthesis of a wide variety of borate anions of high chemical and electrochemical stability—in particular, weakly coordinating anions. This Review summarizes recent advances in the study of boron compounds for energy‐related processes and applications. KW - boron KW - electrolytes KW - hydrogen KW - OLEDs KW - small-molecule activation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218514 VL - 59 IS - 23 SP - 8800 EP - 8816 ER -