TY - JOUR A1 - Werner, Rudolf A. A1 - Habacha, Bilêl A1 - Lütje, Susanne A1 - Bundschuh, Lena A1 - Higuchi, Takahiro A1 - Hartrampf, Philipp A1 - Serfling, Sebastian E. A1 - Derlin, Thorsten A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Essler, Markus A1 - Pienta, Kenneth J. A1 - Eisenberger, Mario A. A1 - Markowski, Mark C. A1 - Shinehouse, Laura A1 - AbdAllah, Rehab A1 - Salavati, Ali A1 - Lodge, Martin A. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Bundschuh, Ralph A. A1 - Rowe, Steven P. T1 - High SUVs Have More Robust Repeatability in Patients with Metastatic Prostate Cancer: Results from a Prospective Test-Retest Cohort Imaged with \(^{18}\)F-DCFPyL JF - Molecular Imaging N2 - No abstract available. KW - SUV Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300748 VL - 2022 ER - TY - JOUR A1 - Weich, Alexander A1 - Higuchi, Takahiro A1 - Bundschuh, Ralph A. A1 - Lapa, Constantin A1 - Serfling, Sebastian E. A1 - Rowe, Steven P. A1 - Pomper, Martin G. A1 - Herrmann, Ken A1 - Buck, Andreas K. A1 - Derlin, Thorsten A1 - Werner, Rudolf A. T1 - Training on reporting and data system (RADS) for somatostatin-receptor targeted molecular imaging can reduce the test anxiety of inexperienced readers JF - Molecular Imaging and Biology N2 - Purpose For somatostatin receptor (SSTR)-positron emission tomography/computed tomography (PET/CT), a standardized framework termed SSTR-reporting and data system (RADS) has been proposed. We aimed to elucidate the impact of a RADS-focused training on reader’s anxiety to report on SSTR-PET/CT, the motivational beliefs in learning such a system, whether it increases reader’s confidence, and its implementation in clinical routine. Procedures A 3-day training course focusing on SSTR-RADS was conducted. Self-report questionnaires were handed out prior to the course (Pre) and thereafter (Post). The impact of the training on the following categories was evaluated: (1) test anxiety to report on SSTR-PET/CT, (2) motivational beliefs, (3) increase in reader’s confidence, and (4) clinical implementation. To assess the effect size of the course, Cohen’s d was calculated (small, d = 0.20; large effect, d = 0.80). Results Of 22 participants, Pre and Post were returned by 21/22 (95.5%). In total, 14/21 (66.7%) were considered inexperienced (IR, < 1 year experience in reading SSTR-PET/CTs) and 7/21 (33.3%) as experienced readers (ER, > 1 year). Applying SSTR-RADS, a large decrease in anxiety to report on SSTR-PET/CT was noted for IR (d =  − 0.74, P = 0.02), but not for ER (d = 0.11, P = 0.78). For the other three categories motivational beliefs, reader’s confidence, and clinical implementation, agreement rates were already high prior to the training and persisted throughout the course (P ≥ 0.21). Conclusions A framework-focused reader training can reduce anxiety to report on SSTR-PET/CTs, in particular for inexperienced readers. This may allow for a more widespread adoption of this system, e.g., in multicenter trials for better intra- and interindividual comparison of scan results. KW - PET/CT KW - neuroendocrine tumor KW - PRRT KW - peptide receptor radionuclide therapy KW - reporting and data system KW - SSTR-RADS KW - RADS Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324645 VL - 24 IS - 4 ER - TY - JOUR A1 - Serfling, Sebastian E. A1 - Lapa, Constantin A1 - Dreher, Niklas A1 - Hartrampf, Philipp E. A1 - Rowe, Steven P. A1 - Higuchi, Takahiro A1 - Schirbel, Andreas A1 - Weich, Alexander A1 - Hahner, Stefanie A1 - Fassnacht, Martin A1 - Buck, Andreas K. A1 - Werner, Rudolf A. T1 - Impact of tumor burden on normal organ distribution in patients imaged with CXCR4-targeted [\(^{68}\)Ga]Ga-PentixaFor PET/CT JF - Molecular Imaging and Biology N2 - Background CXCR4-directed positron emission tomography/computed tomography (PET/CT) has been used as a diagnostic tool in patients with solid tumors. We aimed to determine a potential correlation between tumor burden and radiotracer accumulation in normal organs. Methods Ninety patients with histologically proven solid cancers underwent CXCR4-targeted [\(^{68}\)Ga]Ga-PentixaFor PET/CT. Volumes of interest (VOIs) were placed in normal organs (heart, liver, spleen, bone marrow, and kidneys) and tumor lesions. Mean standardized uptake values (SUV\(_{mean}\)) for normal organs were determined. For CXCR4-positive tumor burden, maximum SUV (SUV\(_{max}\)), tumor volume (TV), and fractional tumor activity (FTA, defined as SUV\(_{mean}\) x TV), were calculated. We used a Spearman's rank correlation coefficient (ρ) to derive correlative indices between normal organ uptake and tumor burden. Results Median SUV\(_{mean}\) in unaffected organs was 5.2 for the spleen (range, 2.44 – 10.55), 3.27 for the kidneys (range, 1.52 – 17.4), followed by bone marrow (1.76, range, 0.84 – 3.98), heart (1.66, range, 0.88 – 2.89), and liver (1.28, range, 0.73 – 2.45). No significant correlation between SUV\(_{max}\) in tumor lesions (ρ ≤ 0.189, P ≥ 0.07), TV (ρ ≥ -0.204, P ≥ 0.06) or FTA (ρ ≥ -0.142, P ≥ 0.18) with the investigated organs was found. Conclusions In patients with solid tumors imaged with [\(^{68}\)Ga]Ga-PentixaFor PET/CT, no relevant tumor sink effect was noted. This observation may be of relevance for therapies with radioactive and non-radioactive CXCR4-directed drugs, as with increasing tumor burden, the dose to normal organs may remain unchanged. KW - CXCR4 KW - C-X-C motif chemokine receptor 4 KW - PET KW - [68Ga]PentixaFor KW - [177Lu]/[90Y]PentixaTher KW - theranostics KW - endoradiotherapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324622 VL - 24 IS - 4 ER - TY - JOUR A1 - Kosmala, Aleksander A1 - Serfling, Sebastian E. A1 - Dreher, Niklas A1 - Lindner, Thomas A1 - Schirbel, Andreas A1 - Lapa, Constantin A1 - Higuchi, Takahiro A1 - Buck, Andreas K. A1 - Weich, Alexander A1 - Werner, Rudolf A. T1 - Associations between normal organs and tumor burden in patients imaged with fibroblast activation protein inhibitor-directed positron emission tomography JF - Cancers N2 - (1) Background: We aimed to quantitatively investigate [\(^{68}\)Ga]Ga-FAPI-04 uptake in normal organs and to assess a relationship with the extent of FAPI-avid tumor burden. (2) Methods: In this single-center retrospective analysis, thirty-four patients with solid cancers underwent a total of 40 [\(^{68}\)Ga]Ga-FAPI-04 PET/CT scans. Mean standardized uptake values (SUV\(_{mean}\)) for normal organs were established by placing volumes of interest (VOIs) in the heart, liver, spleen, pancreas, kidneys, and bone marrow. Total tumor burden was determined by manual segmentation of tumor lesions with increased uptake. For tumor burden, quantitative assessment included maximum SUV (SUV\(_{max}\)), tumor volume (TV), and fractional tumor activity (FTA = TV × SUV\(_{mean}\)). Associations between uptake in normal organs and tumor burden were investigated by applying Spearman's rank correlation coefficient. (3) Results: Median SUV\(_{mean}\) values were 2.15 in the pancreas (range, 1.05–9.91), 1.42 in the right (range, 0.57–3.06) and 1.41 in the left kidney (range, 0.73–2.97), 1.2 in the heart (range, 0.46–2.59), 0.86 in the spleen (range, 0.55–1.58), 0.65 in the liver (range, 0.31–2.11), and 0.57 in the bone marrow (range, 0.26–0.94). We observed a trend towards significance for uptake in the myocardium and tumor-derived SUV\(_{max}\) (ρ = 0.29, p = 0.07) and TV (ρ = −0.30, p = 0.06). No significant correlation was achieved for any of the other organs: SUV\(_{max}\) (ρ ≤ 0.1, p ≥ 0.42), TV (ρ ≤ 0.11, p ≥ 0.43), and FTA (ρ ≤ 0.14, p ≥ 0.38). In a sub-analysis exclusively investigating patients with high tumor burden, significant correlations of myocardial uptake with tumor SUV\(_{max}\) (ρ = 0.44; p = 0.03) and tumor-derived FTA with liver uptake (ρ = 0.47; p = 0.02) were recorded. (4) Conclusions: In this proof-of-concept study, quantification of [\(^{68}\)Ga]Ga-FAPI-04 PET showed no significant correlation between normal organs and tumor burden, except for a trend in the myocardium. Those preliminary findings may trigger future studies to determine possible implications for treatment with radioactive FAP-targeted drugs, as higher tumor load or uptake may not lead to decreased doses in the majority of normal organs. KW - PET KW - [\(^{68}\)Ga]Ga-FAPI KW - theranostics KW - radioligand therapy KW - fibroblast activation protein Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275154 SN - 2072-6694 VL - 14 IS - 11 ER -