TY - JOUR A1 - Brückner, Tobias A1 - Fantuzzi, Felipe A1 - Stennett, Tom E. A1 - Krummenacher, Ivo A1 - Dewhurst, Rian D. A1 - Engels, Bernd A1 - Braunschweig, Holger T1 - Isolation of neutral, mono-, and dicationic B\(_2\)P\(_2\) rings by diphosphorus addition to a boron-boron triple bond JF - Angewandte Chemie International Edition N2 - The NHC-stabilised diboryne (B\(_2\)(SIDep)\(_2\); SIDep=1,3-bis(2,6-diethylphenyl)imidazolin-2-ylidene) undergoes a high-yielding P−P bond activation with tetraethyldiphosphine at room temperature to form a B\(_2\)P\(_2\) heterocycle via a diphosphoryldiborene by 1,2-diphosphination. The heterocycle can be oxidised to a radical cation and a dication, respectively, depending on the oxidant used and its counterion. Starting from the planar, neutral 1,3-bis(alkylidene)-1,3-diborata-2,4-diphosphoniocyclobutane, each oxidation step leads to decreased B−B distances and loss of planarity by cationisation. X-ray analyses in conjunction with DFT and CASSCF/NEVPT2 calculations reveal closed-shell singlet, butterfly-shaped structures for the NHC-stabilised dicationic B\(_2\)P\(_2\) rings, with their diradicaloid, planar-ring isomers lying close in energy. KW - inorganic chemistry KW - radicals KW - boron KW - density functional calculations KW - oxidation KW - phosphorus heterocycles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256451 VL - 60 IS - 24 ER - TY - JOUR A1 - Huang, Zhenguo A1 - Wang, Suning A1 - Dewhurst, Rian D. A1 - Ignat'ev, Nikolai V. A1 - Finze, Maik A1 - Braunschweig, Holger T1 - Boron: Its Role in Energy‐Related Processes and Applications JF - Angewandte Chemie International Edition N2 - Boron's unique position in the Periodic Table, that is, at the apex of the line separating metals and nonmetals, makes it highly versatile in chemical reactions and applications. Contemporary demand for renewable and clean energy as well as energy‐efficient products has seen boron playing key roles in energy‐related research, such as 1) activating and synthesizing energy‐rich small molecules, 2) storing chemical and electrical energy, and 3) converting electrical energy into light. These applications are fundamentally associated with boron's unique characteristics, such as its electron‐deficiency and the availability of an unoccupied p orbital, which allow the formation of a myriad of compounds with a wide range of chemical and physical properties. For example, boron's ability to achieve a full octet of electrons with four covalent bonds and a negative charge has led to the synthesis of a wide variety of borate anions of high chemical and electrochemical stability—in particular, weakly coordinating anions. This Review summarizes recent advances in the study of boron compounds for energy‐related processes and applications. KW - boron KW - electrolytes KW - hydrogen KW - OLEDs KW - small-molecule activation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218514 VL - 59 IS - 23 SP - 8800 EP - 8816 ER - TY - JOUR A1 - Lu, Wei A1 - Jayaraman, Arumugam A1 - Fantuzzi, Felipe A1 - Dewhurst, Rian D. A1 - Härterich, Marcel A1 - Dietz, Maximilian A1 - Hagspiel, Stephan A1 - Krummenbacher, Ivo A1 - Hammond, Kai A1 - Cui, Jingjing A1 - Braunschweig, Holger T1 - An unsymmetrical, cyclic diborene based on a chelating CAAC ligand and its small-molecule activation and rearrangement chemistry JF - Angewandte Chemie International Edition N2 - A one-pot synthesis of a CAAC-stabilized, unsymmetrical, cyclic diborene was achieved via consecutive two-electron reduction steps from an adduct of CAAC and B\(_2\)Br\(_4\)(SMe\(_2\))\(_2\). Theoretical studies revealed that this diborene has a considerably smaller HOMO–LUMO gap than those of reported NHC- and phosphine-supported diborenes. Complexation of the diborene with [AuCl(PCy\(_3\))] afforded two diborene–Au\(^I\) π complexes, while reaction with DurBH\(_2\), P\(_4\) and a terminal acetylene led to the cleavage of B−H, P−P, and C−C π bonds, respectively. Thermal rearrangement of the diborene gave an electron-rich cyclic alkylideneborane, which readily coordinated to Ag\(^I\) via its B=C double bond. KW - inorganic chemistry KW - thermal rearrangement KW - alkylideneborane KW - carbene KW - diborene Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256576 VL - 61 IS - 3 ER -