TY - JOUR A1 - Vigorito, Elena A1 - Kuchenbaecker, Karoline B. A1 - Beesley, Jonathan A1 - Adlard, Julian A1 - Agnarsson, Bjarni A. A1 - Andrulis, Irene L. A1 - Arun, Banu K. A1 - Barjhoux, Laure A1 - Belotti, Muriel A1 - Benitez, Javier A1 - Berger, Andreas A1 - Bojesen, Anders A1 - Bonanni, Bernardo A1 - Brewer, Carole A1 - Caldes, Trinidad A1 - Caligo, Maria A. A1 - Campbell, Ian A1 - Chan, Salina B. A1 - Claes, Kathleen B. M. A1 - Cohn, David E. A1 - Cook, Jackie A1 - Daly, Mary B. A1 - Damiola, Francesca A1 - Davidson, Rosemarie A1 - de Pauw, Antoine A1 - Delnatte, Capucine A1 - Diez, Orland A1 - Domchek, Susan M. A1 - Dumont, Martine A1 - Durda, Katarzyna A1 - Dworniczak, Bernd A1 - Easton, Douglas F. A1 - Eccles, Diana A1 - Ardnor, Christina Edwinsdotter A1 - Eeles, Ros A1 - Ejlertsen, Bent A1 - Ellis, Steve A1 - Evans, D. Gareth A1 - Feliubadalo, Lidia A1 - Fostira, Florentia A1 - Foulkes, William D. A1 - Friedman, Eitan A1 - Frost, Debra A1 - Gaddam, Pragna A1 - Ganz, Patricia A. A1 - Garber, Judy A1 - Garcia-Barberan, Vanesa A1 - Gauthier-Villars, Marion A1 - Gehrig, Andrea A1 - Gerdes, Anne-Marie A1 - Giraud, Sophie A1 - Godwin, Andrew K. A1 - Goldgar, David E. A1 - Hake, Christopher R. A1 - Hansen, Thomas V. O. A1 - Healey, Sue A1 - Hodgson, Shirley A1 - Hogervorst, Frans B. L. A1 - Houdayer, Claude A1 - Hulick, Peter J. A1 - Imyanitov, Evgeny N. A1 - Isaacs, Claudine A1 - Izatt, Louise A1 - Izquierdo, Angel A1 - Jacobs, Lauren A1 - Jakubowska, Anna A1 - Janavicius, Ramunas A1 - Jaworska-Bieniek, Katarzyna A1 - Jensen, Uffe Birk A1 - John, Esther M. A1 - Vijai, Joseph A1 - Karlan, Beth Y. A1 - Kast, Karin A1 - Khan, Sofia A1 - Kwong, Ava A1 - Laitman, Yael A1 - Lester, Jenny A1 - Lesueur, Fabienne A1 - Liljegren, Annelie A1 - Lubinski, Jan A1 - Mai, Phuong L. A1 - Manoukian, Siranoush A1 - Mazoyer, Sylvie A1 - Meindl, Alfons A1 - Mensenkamp, Arjen R. A1 - Montagna, Marco A1 - Nathanson, Katherine L. A1 - Neuhausen, Susan L. A1 - Nevanlinna, Heli A1 - Niederacher, Dieter A1 - Olah, Edith A1 - Olopade, Olufunmilayo I. A1 - Ong, Kai-ren A1 - Osorio, Ana A1 - Park, Sue Kyung A1 - Paulsson-Karlsson, Ylva A1 - Pedersen, Inge Sokilde A1 - Peissel, Bernard A1 - Peterlongo, Paolo A1 - Pfeiler, Georg A1 - Phelan, Catherine M. A1 - Piedmonte, Marion A1 - Poppe, Bruce A1 - Pujana, Miquel Angel A1 - Radice, Paolo A1 - Rennert, Gad A1 - Rodriguez, Gustavo C. A1 - Rookus, Matti A. A1 - Ross, Eric A. A1 - Schmutzler, Rita Katharina A1 - Simard, Jacques A1 - Singer, Christian F. A1 - Slavin, Thomas P. A1 - Soucy, Penny A1 - Southey, Melissa A1 - Steinemann, Doris A1 - Stoppa-Lyonnet, Dominique A1 - Sukiennicki, Grzegorz A1 - Sutter, Christian A1 - Szabo, Csilla I. A1 - Tea, Muy-Kheng A1 - Teixeira, Manuel R. A1 - Teo, Soo-Hwang A1 - Terry, Mary Beth A1 - Thomassen, Mads A1 - Tibiletti, Maria Grazia A1 - Tihomirova, Laima A1 - Tognazzo, Silvia A1 - van Rensburg, Elizabeth J. A1 - Varesco, Liliana A1 - Varon-Mateeva, Raymonda A1 - Vratimos, Athanassios A1 - Weitzel, Jeffrey N. A1 - McGuffog, Lesley A1 - Kirk, Judy A1 - Toland, Amanda Ewart A1 - Hamann, Ute A1 - Lindor, Noralane A1 - Ramus, Susan J. A1 - Greene, Mark H. A1 - Couch, Fergus J. A1 - Offit, Kenneth A1 - Pharoah, Paul D. P. A1 - Chenevix-Trench, Georgia A1 - Antoniou, Antonis C. T1 - Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers JF - PLoS ONE N2 - Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10−16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10−6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population. KW - fine-scale mapping KW - ovarian cancer KW - genetics KW - BRCA1 KW - BRCA2 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166869 VL - 11 IS - 7 ER - TY - JOUR A1 - Sepahi, Ilnaz A1 - Faust, Ulrike A1 - Sturm, Marc A1 - Bosse, Kristin A1 - Kehrer, Martin A1 - Heinrich, Tilman A1 - Grundman-Hauser, Kathrin A1 - Bauer, Peter A1 - Ossowski, Stephan A1 - Susak, Hana A1 - Varon, Raymonda A1 - Schröck, Evelin A1 - Niederacher, Dieter A1 - Auber, Bernd A1 - Sutter, Christian A1 - Arnold, Norbert A1 - Hahnen, Eric A1 - Dworniczak, Bernd A1 - Wang-Gorke, Shan A1 - Gehrig, Andrea A1 - Weber, Bernhard H. F. A1 - Engel, Christoph A1 - Lemke, Johannes R. A1 - Hartkopf, Andreas A1 - Huu Phuc, Nguyen A1 - Riess, Olaf A1 - Schroeder, Christopher T1 - Investigating the effects of additional truncating variants in DNA-repair genes on breast cancer risk in BRCA1-positive women JF - BMC Cancer N2 - Background Inherited pathogenic variants in BRCA1 and BRCA2 are the most common causes of hereditary breast and ovarian cancer (HBOC). The risk of developing breast cancer by age 80 in women carrying a BRCA1 pathogenic variant is 72%. The lifetime risk varies between families and even within affected individuals of the same family. The cause of this variability is largely unknown, but it is hypothesized that additional genetic factors contribute to differences in age at onset (AAO). Here we investigated whether truncating and rare missense variants in genes of different DNA-repair pathways contribute to this phenomenon. Methods We used extreme phenotype sampling to recruit 133 BRCA1-positive patients with either early breast cancer onset, below 35 (early AAO cohort) or cancer-free by age 60 (controls). Next Generation Sequencing (NGS) was used to screen for variants in 311 genes involved in different DNA-repair pathways. Results Patients with an early AAO (73 women) had developed breast cancer at a median age of 27 years (interquartile range (IQR); 25.00–27.00 years). A total of 3703 variants were detected in all patients and 43 of those (1.2%) were truncating variants. The truncating variants were found in 26 women of the early AAO group (35.6%; 95%-CI 24.7 - 47.7%) compared to 16 women of controls (26.7%; 95%-CI 16.1 to 39.7%). When adjusted for environmental factors and family history, the odds ratio indicated an increased breast cancer risk for those carrying an additional truncating DNA-repair variant to BRCA1 mutation (OR: 3.1; 95%-CI 0.92 to 11.5; p-value = 0.07), although it did not reach the conventionally acceptable significance level of 0.05. Conclusions To our knowledge this is the first time that the combined effect of truncating variants in DNA-repair genes on AAO in patients with hereditary breast cancer is investigated. Our results indicate that co-occurring truncating variants might be associated with an earlier onset of breast cancer in BRCA1-positive patients. Larger cohorts are needed to confirm these results. KW - breast cancer KW - age at onset KW - DNA-repair genes KW - next-generation-sequencing KW - panel sequencing KW - extreme phenotypes KW - hereditary breast and ovarian cancer KW - BRCA1 KW - DNA-repair Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237676 VL - 19 ER - TY - JOUR A1 - Weber-Lassalle, Nana A1 - Hauke, Jan A1 - Ramser, Juliane A1 - Richters, Lisa A1 - Groß, Eva A1 - Blümcke, Britta A1 - Gehrig, Andrea A1 - Kahlert, Anne-Karin A1 - Müller, Clemens R. A1 - Hackmann, Karl A1 - Honisch, Ellen A1 - Weber-Lassalle, Konstantin A1 - Niederacher, Dieter A1 - Borde, Julika A1 - Thiele, Holger A1 - Ernst, Corinna A1 - Altmüller, Janine A1 - Neidhardt, Guido A1 - Nürnberg, Peter A1 - Klaschik, Kristina A1 - Schroeder, Christopher A1 - Platzer, Konrad A1 - Volk, Alexander E. A1 - Wang-Gohrke, Shan A1 - Just, Walter A1 - Auber, Bernd A1 - Kubisch, Christian A1 - Schmidt, Gunnar A1 - Horvath, Judit A1 - Wappenschmidt, Barbara A1 - Engel, Christoph A1 - Arnold, Norbert A1 - Dworniczak, Bernd A1 - Rhiem, Kerstin A1 - Meindl, Alfons A1 - Schmutzler, Rita K. A1 - Hahnen, Eric T1 - BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer JF - Breast Cancer Research N2 - Background Germline mutations in the BRIP1 gene have been described as conferring a moderate risk for ovarian cancer (OC), while the role of BRIP1 in breast cancer (BC) pathogenesis remains controversial. Methods To assess the role of deleterious BRIP1 germline mutations in BC/OC predisposition, 6341 well-characterized index patients with BC, 706 index patients with OC, and 2189 geographically matched female controls were screened for loss-of-function (LoF) mutations and potentially damaging missense variants. All index patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germline testing and tested negative for pathogenic BRCA1/2 variants. Results BRIP1 LoF mutations confer a high OC risk in familial index patients (odds ratio (OR) = 20.97, 95% confidence interval (CI) = 12.02–36.57, P < 0.0001) and in the subgroup of index patients with late-onset OC (OR = 29.91, 95% CI = 14.99–59.66, P < 0.0001). No significant association of BRIP1 LoF mutations with familial BC was observed (OR = 1.81 95% CI = 1.00–3.30, P = 0.0623). In the subgroup of familial BC index patients without a family history of OC there was also no apparent association (OR = 1.42, 95% CI = 0.70–2.90, P = 0.3030). In 1027 familial BC index patients with a family history of OC, the BRIP1 mutation prevalence was significantly higher than that observed in controls (OR = 3.59, 95% CI = 1.43–9.01; P = 0.0168). Based on the negative association between BRIP1 LoF mutations and familial BC in the absence of an OC family history, we conclude that the elevated mutation prevalence in the latter cohort was driven by the occurrence of OC in these families. Compared with controls, predicted damaging rare missense variants were significantly more prevalent in OC (P = 0.0014) but not in BC (P = 0.0693) patients. Conclusions To avoid ambiguous results, studies aimed at assessing the impact of candidate predisposition gene mutations on BC risk might differentiate between BC index patients with an OC family history and those without. In familial cases, we suggest that BRIP1 is a high-risk gene for late-onset OC but not a BC predisposition gene, though minor effects cannot be excluded. KW - breast cancer KW - ovarian cancer KW - BRIP1 gene KW - germline mutations Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233433 VL - 20 ER -