TY - JOUR A1 - Becker, Charles R. A1 - He, L. A1 - Einfeldt, S. A1 - Wu, Y. S. A1 - Lérondel, G. A1 - Heinke, H. A1 - Oehling, S. A1 - Bicknell-Tassius, R. N. A1 - Landwehr, G. T1 - Molecular beam epitaxial growth and characterization of (100) HgSe on GaAs N2 - In this paper, we present results on the first MBE growth of HgSe. The influence of the GaAs substrate temperature as well as the Hg and Se fluxes on the growth and the electrical properties has been investigated. It has been found that the growth rate is very low at substrate temperatures above 120°C. At 120°C and at lower temperatures, the growth rate is appreciably higher. The sticking coefficient of Se seems to depend inversely on the Hg/Se flux ratio. Epitaxial growth could be maintained at 70°C with Hg/Se flux ratios between lOO and ISO, and at 160°C between 280 and 450. The electron mobilities of these HgSe epilayers at room temperature decrease from a maximum value of 8.2 x 10^3 cm2 /V' s with increasing electron concentration. The concentration was found to be between 6xlO^17 and 1.6x10^19 cm- 3 at room temperature. Rocking curves from X-ray diffraction measurements of the better epilayers have a full width at half maximum of 5S0 arc sec. KW - Physik Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-50947 ER - TY - JOUR A1 - Wu, Y. S. A1 - Becker, Charles R. A1 - Waag, A. A1 - Schmiedl, R. A1 - Einfeldt, S. A1 - Landwehr, G. T1 - Oxygen on the (100) CdTe surface N2 - We have investigated oxygen on CdTe substrates by means of x-ray photoelectron spectroscopy (XPS) and reflection high-energy electron diffraction (RHEED). A Te oxide layer that was at least 15 A thick was found on the surface of as-delivered CdTe substrates that were mechanically polished. This oxide is not easily evaporated at temperatures lower than 350°C. Furthermore, heating in air, which further oxidizes the CdTe layer, should be avoided. Etching with HCI acid (15% HCl) for at least 20 s and then rinsing with de-ionized water reduces the Te oxide layer on the surface down to 4% of a monoatomic layer. However, according to XPS measurements of the 0 Is peak, 20%-30% of a monoatomic layer of oxygen remains on the surface, which can be eliminated by heating at temperatures ranging between 300 and 340 cC. The RHEED patterns for a molecular beam epitaxially (MBE)-grown CdTe film on a (lOO) CdTe substrate with approximately one monoatomic layer of oxidized Te on the surface lose the characteristics of the normal RHEED pattems for a MBE-grown CdTe film on an oxygen-free CdTe substrate. Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37869 ER -