TY - JOUR A1 - Schmidt, Sven A1 - Alt, Yvonne A1 - Deoghare, Nikita A1 - Krüger, Sarah A1 - Kern, Anna A1 - Rockel, Anna Frederike A1 - Wagner, Nicole A1 - Ergün, Süleyman A1 - Wörsdörfer, Philipp T1 - A blood vessel organoid model recapitulating aspects of vasculogenesis, angiogenesis and vessel wall maturation JF - Organoids N2 - Blood vessel organoids are an important in vitro model to understand the underlying mechanisms of human blood vessel development and for toxicity testing or high throughput drug screening. Here we present a novel, cost-effective, and easy to manufacture vascular organoid model. To engineer the organoids, a defined number of human induced pluripotent stem cells are seeded in non-adhesive agarose coated wells of a 96-well plate and directed towards a lateral plate mesoderm fate by activation of Wnt and BMP4 signaling. We observe the formation of a circular layer of angioblasts around days 5–6. Induced by VEGF application, CD31\(^+\) vascular endothelial cells appear within this vasculogenic zone at approximately day 7 of organoid culture. These cells arrange to form a primitive vascular plexus from which angiogenic sprouting is observed after 10 days of culture. The differentiation outcome is highly reproducible, and the size of organoids is scalable depending on the number of starting cells. We observe that the initial vascular ring forms at the interface between two cell populations. The inner cellular compartment can be distinguished from the outer by the expression of GATA6, a marker of lateral plate mesoderm. Finally, 14-days-old organoids were transplanted on the chorioallantois membrane of chicken embryos resulting in a functional connection of the human vascular network to the chicken circulation. Perfusion of the vessels leads to vessel wall maturation and remodeling as indicated by the formation of a continuous layer of smooth muscle actin expressing cells enwrapping the endothelium. In summary, our organoid model recapitulates human vasculogenesis, angiogenesis as well as vessel wall maturation and therefore represents an easy and cost-effective tool to study all steps of blood vessel development and maturation directly in the human setting without animal experimentation. KW - organoid KW - blood vessel KW - vasculogenesis KW - angiogenesis KW - induced pluripotent stem cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284043 SN - 2674-1172 VL - 1 IS - 1 SP - 41 EP - 53 ER - TY - JOUR A1 - Wörsdörfer, Philipp A1 - I, Takashi A1 - Asahina, Izumi A1 - Sumita, Yoshinori A1 - Ergün, Süleyman T1 - Do not keep it simple: recent advances in the generation of complex organoids JF - Journal of Neural Transmission N2 - 3D cell culture models which closely resemble real human tissues are of high interest for disease modelling, drug screening as well as a deeper understanding of human developmental biology. Such structures are termed organoids. Within the last years, several human organoid models were described. These are usually stem cell derived, arise by self-organization, mimic mechanisms of normal tissue development, show typical organ morphogenesis and recapitulate at least some organ specific functions. Many tissues have been reproduced in vitro such as gut, liver, lung, kidney and brain. The resulting entities can be either derived from an adult stem cell population, or generated from pluripotent stem cells using a specific differentiation protocol. However, many organoid models only recapitulate the organs parenchyma but are devoid of stromal components such as blood vessels, connective tissue and inflammatory cells. Recent studies show that the incorporation of endothelial and mesenchymal cells into organoids improved their maturation and might be required to create fully functional micro-tissues, which will allow deeper insights into human embryogenesis as well as disease development and progression. In this review article, we will summarize and discuss recent works trying to incorporate stromal components into organoids, with a special focus on neural organoid models. KW - organoid KW - stroma KW - sasculature KW - neural KW - microglia KW - blood vessel Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235628 SN - 0300-9564 VL - 127 ER - TY - JOUR A1 - Schreiber, Laura M. A1 - Lohr, David A1 - Baltes, Steffen A1 - Vogel, Ulrich A1 - Elabyad, Ibrahim A. A1 - Bille, Maya A1 - Reiter, Theresa A1 - Kosmala, Aleksander A1 - Gassenmaier, Tobias A1 - Stefanescu, Maria R. A1 - Kollmann, Alena A1 - Aures, Julia A1 - Schnitter, Florian A1 - Pali, Mihaela A1 - Ueda, Yuichiro A1 - Williams, Tatiana A1 - Christa, Martin A1 - Hofmann, Ulrich A1 - Bauer, Wolfgang A1 - Gerull, Brenda A1 - Zernecke, Alma A1 - Ergün, Süleyman A1 - Terekhov, Maxim T1 - Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research JF - Frontiers in Cardiovascular Medicine N2 - A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research. KW - ultrahigh-field MRI KW - large animal models KW - translational research KW - research infrastructure KW - heart KW - organoid KW - pig KW - cardiovascular MRI Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-317398 SN - 2297-055X VL - 10 ER -