TY - JOUR A1 - Rockel, Anna F. A1 - Wagner, Nicole A1 - Spenger, Peter A1 - Ergün, Süleyman A1 - Wörsdörfer, Philipp T1 - Neuro-mesodermal assembloids recapitulate aspects of peripheral nervous system development \(in\) \(vitro\) JF - Stem Cell Reports N2 - Summary Here we describe a novel neuro-mesodermal assembloid model that recapitulates aspects of peripheral nervous system (PNS) development such as neural crest cell (NCC) induction, migration, and sensory as well as sympathetic ganglion formation. The ganglia send projections to the mesodermal as well as neural compartment. Axons in the mesodermal part are associated with Schwann cells. In addition, peripheral ganglia and nerve fibers interact with a co-developing vascular plexus, forming a neurovascular niche. Finally, developing sensory ganglia show response to capsaicin indicating their functionality. The presented assembloid model could help to uncover mechanisms of human NCC induction, delamination, migration, and PNS development. Moreover, the model could be used for toxicity screenings or drug testing. The co-development of mesodermal and neuroectodermal tissues and a vascular plexus along with a PNS allows us to investigate the crosstalk between neuroectoderm and mesoderm and between peripheral neurons/neuroblasts and endothelial cells. Highlights •Novel neuro-mesodermal assembloid model of peripheral nervous system development •Model covers neural crest cell induction, migration, and ganglion formation •Ganglia send projections to the mesodermal as well as neural compartment •Peripheral ganglia and nerve fibers interact with a co-developing vascular plexus KW - peripheral nervous system KW - neural crest KW - sensory ganglia KW - sensory neuron KW - vasculature KW - blood vessel KW - neural organoid KW - mesodermal organoid KW - assembloid KW - human induced pluripotent stem cells Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349925 SN - 2213-6711 VL - 18 IS - 5 ER - TY - JOUR A1 - Ascheid, David A1 - Baumann, Magdalena A1 - Funke, Caroline A1 - Volz, Julia A1 - Pinnecker, Jürgen A1 - Friedrich, Mike A1 - Höhn, Marie A1 - Nandigama, Rajender A1 - Ergün, Süleyman A1 - Nieswandt, Bernhard A1 - Heinze, Katrin G. A1 - Henke, Erik T1 - Image-based modeling of vascular organization to evaluate anti-angiogenic therapy JF - Biology Direct N2 - In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy. KW - vascular structure KW - cancer KW - tumor microenvironment KW - optical clearing KW - light sheet fluorescence microscopy KW - 3D image analysis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357242 VL - 18 ER - TY - JOUR A1 - Madrahimov, Nodir A1 - Mutsenko, Vitalii A1 - Natanov, Ruslan A1 - Radaković, Dejan A1 - Klapproth, André A1 - Hassan, Mohamed A1 - Rosenfeldt, Mathias A1 - Kleefeldt, Florian A1 - Aleksic, Ivan A1 - Ergün, Süleyman A1 - Otto, Christoph A1 - Leyh, Rainer G. A1 - Bening, Constanze T1 - Multiorgan recovery in a cadaver body using mild hypothermic ECMO treatment in a murine model JF - Intensive Care Medicine Experimental N2 - Background Transplant candidates on the waiting list are increasingly challenged by the lack of organs. Most of the organs can only be kept viable within very limited timeframes (e.g., mere 4–6 h for heart and lungs exposed to refrigeration temperatures ex vivo). Donation after circulatory death (DCD) using extracorporeal membrane oxygenation (ECMO) can significantly enlarge the donor pool, organ yield per donor, and shelf life. Nevertheless, clinical attempts to recover organs for transplantation after uncontrolled DCD are extremely complex and hardly reproducible. Therefore, as a preliminary strategy to fulfill this task, experimental protocols using feasible animal models are highly warranted. The primary aim of the study was to develop a model of ECMO-based cadaver organ recovery in mice. Our model mimics uncontrolled organ donation after an “out-of-hospital” sudden unexpected death with subsequent “in-hospital” cadaver management post-mortem. The secondary aim was to assess blood gas parameters, cardiac activity as well as overall organ state. The study protocol included post-mortem heparin–streptokinase administration 10 min after confirmed death induced by cervical dislocation under full anesthesia. After cannulation, veno-arterial ECMO (V–A ECMO) was started 1 h after death and continued for 2 h under mild hypothermic conditions followed by organ harvest. Pressure- and flow-controlled oxygenated blood-based reperfusion of a cadaver body was accompanied by blood gas analysis (BGA), electrocardiography, and histological evaluation of ischemia–reperfusion injury. For the first time, we designed and implemented, a not yet reported, miniaturized murine hemodialysis circuit for the treatment of severe hyperkalemia and metabolic acidosis post-mortem. Results BGA parameters confirmed profound ischemia typical for cadavers and incompatible with normal physiology, including extremely low blood pH, profound negative base excess, and enormously high levels of lactate. Two hours after ECMO implantation, blood pH values of a cadaver body restored from < 6.5 to 7.3 ± 0.05, pCO2 was lowered from > 130 to 41.7 ± 10.5 mmHg, sO2, base excess, and HCO3 were all elevated from below detection thresholds to 99.5 ± 0.6%, − 4 ± 6.2 and 22.0 ± 6.0 mmol/L, respectively (Student T test, p < 0.05). A substantial decrease in hyperlactatemia (from > 20 to 10.5 ± 1.7 mmol/L) and hyperkalemia (from > 9 to 6.9 ± 1.0 mmol/L) was observed when hemodialysis was implemented. On balance, the first signs of regained heart activity appeared on average 10 min after ECMO initiation without cardioplegia or any inotropic and vasopressor support. This was followed by restoration of myocardial contractility with a heart rate of up to 200 beats per minute (bpm) as detected by an electrocardiogram (ECG). Histological examinations revealed no evidence of heart injury 3 h post-mortem, whereas shock-specific morphological changes relevant to acute death and consequent cardiac/circulatory arrest were observed in the lungs, liver, and kidney of both control and ECMO-treated cadaver mice. Conclusions Thus, our model represents a promising approach to facilitate studying perspectives of cadaveric multiorgan recovery for transplantation. Moreover, it opens new possibilities for cadaver organ treatment to extend and potentiate donation and, hence, contribute to solving the organ shortage dilemma. KW - extracorporeal membrane oxygenation KW - cadaver multiorgan preservation KW - mild hypothermia KW - post-mortem heart recovery Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357381 VL - 11 ER - TY - JOUR A1 - Gruschwitz, Philipp A1 - Hartung, Viktor A1 - Ergün, Süleyman A1 - Peter, Dominik A1 - Lichthardt, Sven A1 - Huflage, Henner A1 - Hendel, Robin A1 - Pannenbecker, Pauline A1 - Augustin, Anne Marie A1 - Kunz, Andreas Steven A1 - Feldle, Philipp A1 - Bley, Thorsten Alexander A1 - Grunz, Jan-Peter T1 - Comparison of ultrahigh and standard resolution photon-counting CT angiography of the femoral arteries in a continuously perfused in vitro model JF - European Radiology Experimental N2 - Background With the emergence of photon-counting CT, ultrahigh-resolution (UHR) imaging can be performed without dose penalty. This study aims to directly compare the image quality of UHR and standard resolution (SR) scan mode in femoral artery angiographies. Methods After establishing continuous extracorporeal perfusion in four fresh-frozen cadaveric specimens, photon-counting CT angiographies were performed with a radiation dose of 5 mGy and tube voltage of 120 kV in both SR and UHR mode. Images were reconstructed with dedicated convolution kernels (soft: Body-vascular (Bv)48; sharp: Bv60; ultrasharp: Bv76). Six radiologists evaluated the image quality by means of a pairwise forced-choice comparison tool. Kendall’s concordance coefficient (W) was calculated to quantify interrater agreement. Image quality was further assessed by measuring intraluminal attenuation and image noise as well as by calculating signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR). Results UHR yielded lower noise than SR for identical reconstructions with kernels ≥ Bv60 (p < 0.001). UHR scans exhibited lower intraluminal attenuation compared to SR (Bv60: 406.4 ± 25.1 versus 418.1 ± 30.1 HU; p < 0.001). Irrespective of scan mode, SNR and CNR decreased while noise increased with sharper kernels but UHR scans were objectively superior to SR nonetheless (Bv60: SNR 25.9 ± 6.4 versus 20.9 ± 5.3; CNR 22.7 ± 5.8 versus 18.4 ± 4.8; p < 0.001). Notably, UHR scans were preferred in subjective assessment when images were reconstructed with the ultrasharp Bv76 kernel, whereas SR was rated superior for Bv60. Interrater agreement was high (W = 0.935). Conclusions Combinations of UHR scan mode and ultrasharp convolution kernel are able to exploit the full image quality potential in photon-counting CT angiography of the femoral arteries. Relevance statement The UHR scan mode offers improved image quality and may increase diagnostic accuracy in CT angiography of the peripheral arterial runoff when optimized reconstruction parameters are chosen. Key points • UHR photon-counting CT improves image quality in combination with ultrasharp convolution kernels. • UHR datasets display lower image noise compared with identically reconstructed standard resolution scans. • Scans in UHR mode show decreased intraluminal attenuation compared with standard resolution imaging. KW - CT angiography KW - femoral arteries KW - photon-counting computed tomography (CT) KW - small pixel effect KW - ultrahigh resolution Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357905 VL - 7 ER - TY - JOUR A1 - Gruschwitz, Philipp A1 - Hartung, Viktor A1 - Kleefeldt, Florian A1 - Peter, Dominik A1 - Lichthardt, Sven A1 - Huflage, Henner A1 - Grunz, Jan-Peter A1 - Augustin, Anne Marie A1 - Ergün, Süleyman A1 - Bley, Thorsten Alexander A1 - Petritsch, Bernhard T1 - Continuous extracorporeal femoral perfusion model for intravascular ultrasound, computed tomography and digital subtraction angiography JF - PLoS One N2 - Objectives We developed a novel human cadaveric perfusion model with continuous extracorporeal femoral perfusion suitable for performing intra-individual comparison studies, training of interventional procedures and preclinical testing of endovascular devices. Objective of this study was to introduce the techniques and evaluate the feasibility for realistic computed tomography angiography (CTA), digital subtraction angiography (DSA) including vascular interventions, and intravascular ultrasound (IVUS). Methods The establishment of the extracorporeal perfusion was attempted using one formalin-fixed and five fresh-frozen human cadavers. In all specimens, the common femoral and popliteal arteries were prepared, introducer sheaths inserted, and perfusion established by a peristaltic pump. Subsequently, we performed CTA and bilateral DSA in five cadavers and IVUS on both legs of four donors. Examination time without unintentional interruption was measured both with and without non-contrast planning CT. Percutaneous transluminal angioplasty and stenting was performed by two interventional radiologists on nine extremities (five donors) using a broad spectrum of different intravascular devices. Results The perfusion of the upper leg arteries was successfully established in all fresh-frozen but not in the formalin-fixed cadaver. The experimental setup generated a stable circulation in each procedure (ten upper legs) for a period of more than six hours. Images acquired with CT, DSA and IVUS offered a realistic impression and enabled the sufficient visualization of all examined vessel segments. Arterial cannulating, percutaneous transluminal angioplasty as well as stent deployment were feasible in a way that is comparable to a vascular intervention in vivo. The perfusion model allowed for introduction and testing of previously not used devices. Conclusions The continuous femoral perfusion model can be established with moderate effort, works stable, and is utilizable for medical imaging of the peripheral arterial system using CTA, DSA and IVUS. Therefore, it appears suitable for research studies, developing skills in interventional procedures and testing of new or unfamiliar vascular devices. KW - continuous extracorporeal femoral perfusion model KW - novel human cadaveric perfusion model KW - computed tomography angiography (CTA) KW - digital subtraction angiography (DSA) KW - intravascular ultrasound (IVUS) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350136 SN - 1932-6203 VL - 18 IS - 5 ER - TY - JOUR A1 - Götz, Lisa A1 - Rueckschloss, Uwe A1 - Balk, Gözde A1 - Pfeiffer, Verena A1 - Ergün, Süleyman A1 - Kleefeldt, Florian T1 - The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer JF - Frontiers in Immunology N2 - The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology. KW - CEACAM1 KW - CEA KW - cancer KW - tumor KW - malignancy KW - metastasis KW - signaling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357250 VL - 14 ER - TY - JOUR A1 - Luetkens, Karsten Sebastian A1 - Grunz, Jan-Peter A1 - Kunz, Andreas Steven A1 - Huflage, Henner A1 - Weißenberger, Manuel A1 - Hartung, Viktor A1 - Patzer, Theresa Sophie A1 - Gruschwitz, Philipp A1 - Ergün, Süleyman A1 - Bley, Thorsten Alexander A1 - Feldle, Philipp T1 - Ultra-high-resolution photon-counting detector CT arthrography of the ankle: a feasibility study JF - Diagnostics N2 - This study was designed to investigate the image quality of ultra-high-resolution ankle arthrography employing a photon-counting detector CT. Bilateral arthrograms were acquired in four cadaveric specimens with full-dose (10 mGy) and low-dose (3 mGy) scan protocols. Three convolution kernels with different spatial frequencies were utilized for image reconstruction (ρ\(_{50}\); Br98: 39.0, Br84: 22.6, Br76: 16.5 lp/cm). Seven radiologists subjectively assessed the image quality regarding the depiction of bone, hyaline cartilage, and ligaments. An additional quantitative assessment comprised the measurement of noise and the computation of contrast-to-noise ratios (CNR). While an optimal depiction of bone tissue was achieved with the ultra-sharp Br98 kernel (S ≤ 0.043), the visualization of cartilage improved with lower modulation transfer functions at each dose level (p ≤ 0.014). The interrater reliability ranged from good to excellent for all assessed tissues (intraclass correlation coefficient ≥ 0.805). The noise levels in subcutaneous fat decreased with reduced spatial frequency (p < 0.001). Notably, the low-dose Br76 matched the CNR of the full-dose Br84 (p 0.999) and superseded Br98 (p < 0.001) in all tissues. Based on the reported results, a photon-counting detector CT arthrography of the ankle with an ultra-high-resolution collimation offers stellar image quality and tissue assessability, improving the evaluation of miniscule anatomical structures. While bone depiction was superior in combination with an ultra-sharp convolution kernel, soft tissue evaluation benefited from employing a lower spatial frequency. KW - photon-counting CT KW - arthrography KW - ankle KW - cartilage KW - radiation dosage Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-362622 SN - 2075-4418 VL - 13 IS - 13 ER - TY - JOUR A1 - Elsner, Clara A1 - Kunz, Andreas Steven A1 - Wagner, Nicole A1 - Huflage, Henner A1 - Hübner, Stefan A1 - Luetkens, Karsten Sebastian A1 - Bley, Thorsten Alexander A1 - Schmitt, Rainer A1 - Ergün, Süleyman A1 - Grunz, Jan-Peter T1 - MRI-based evaluation of the flexor digitorum superficialis anatomy: investigating the prevalence and morphometry of the “chiasma antebrachii” JF - Diagnostics N2 - Recent dissection studies resulted in the introduction of the term “chiasma antebrachii”, which represents an intersection of the flexor digitorum superficialis (FDS) tendons for digits 2 and 3 in the distal third of the forearm. This retrospective investigation aimed to provide an MRI-based morphologic analysis of the chiasma antebrachii. In 89 patients (41 women, 39.3 ± 21.3 years), MRI examinations of the forearm (2010–2021) were reviewed by two radiologists, who evaluated all studies for the presence and length of the chiasma as well as its distance from the distal radioulnar and elbow joint. The chiasma antebrachii was identified in the distal third of the forearm in 88 patients (98.9%), while one intersection was located more proximally in the middle part. The chiasma had a median length of 28 mm (interquartile range: 24–35 mm). Its distances to the distal radioulnar and elbow joint were 16 mm (8–25 mm) and 215 mm (187–227 mm), respectively. T1-weighted post-contrast sequences were found to be superior to T2- or proton-density-weighted sequences in 71 cases (79.8%). To conclude, the chiasma antebrachii is part of the standard FDS anatomy. Knowledge of its morphology is important, e.g., in targeted injections of therapeutics or reconstructive surgery. KW - flexor digitorum superficialis KW - flexor tendon KW - chiasma antebrachii KW - magnetic resonance imaging Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-362631 SN - 2075-4418 VL - 13 IS - 14 ER -