TY - JOUR A1 - Salvador, Ellaine A1 - Kessler, Almuth F. A1 - Domröse, Dominik A1 - Hörmann, Julia A1 - Schaeffer, Clara A1 - Giniunaite, Aiste A1 - Burek, Malgorzata A1 - Tempel-Brami, Catherine A1 - Voloshin, Tali A1 - Volodin, Alexandra A1 - Zeidan, Adel A1 - Giladi, Moshe A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Förster, Carola Y. A1 - Hagemann, Carsten T1 - Tumor Treating Fields (TTFields) reversibly permeabilize the blood–brain barrier in vitro and in vivo JF - Biomolecules N2 - Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood–brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB’s integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100–300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy. KW - blood–brain barrier KW - TTFields KW - CNS disorders Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288057 SN - 2218-273X VL - 12 IS - 10 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Nagai, Michiaki A1 - Ergün, Süleyman A1 - Braunger, Barbara M. A1 - Förster, Carola Y. T1 - The protective effects of neurotrophins and microRNA in diabetic retinopathy, nephropathy and heart failure via regulating endothelial function JF - Biomolecules N2 - Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted. KW - diabetic retinopathy KW - diabetes mellitus KW - microvascular complications KW - diabetic nephropathy KW - heart failure KW - microRNA KW - neurotrophins Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285966 SN - 2218-273X VL - 12 IS - 8 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Hayashi, Kentaro A1 - Störk, Stefan A1 - Scheper, Verena A1 - Lenarz, Thomas A1 - Förster, Carola Y. T1 - The conspicuous link between ear, brain and heart − Could neurotrophin-treatment of age-related hearing loss help prevent Alzheimer's disease and associated amyloid cardiomyopathy? JF - Biomolecules N2 - Alzheimer's disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction and cognitive decline. While the deposition of amyloid β peptide (Aβ) and the formation of neurofibrillary tangles (NFTs) are the pathological hallmarks of AD-affected brains, the majority of cases exhibits a combination of comorbidities that ultimately lead to multi-organ failure. Of particular interest, it can be demonstrated that Aβ pathology is present in the hearts of patients with AD, while the formation of NFT in the auditory system can be detected much earlier than the onset of symptoms. Progressive hearing impairment may beget social isolation and accelerate cognitive decline and increase the risk of developing dementia. The current review discusses the concept of a brain–ear–heart axis by which Aβ and NFT inhibition could be achieved through targeted supplementation of neurotrophic factors to the cochlea and the brain. Such amyloid inhibition might also indirectly affect amyloid accumulation in the heart, thus reducing the risk of developing AD-associated amyloid cardiomyopathy and cardiovascular disease. KW - Alzheimer's disease KW - amyloid cardiomyopathy KW - heart failure KW - age-related hearing loss KW - neurotrophins KW - blood–brain barrier KW - blood–labyrinth barrier KW - spiral ganglion neuron KW - BDNF KW - GDNF Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241084 SN - 2218-273X VL - 11 IS - 6 ER - TY - JOUR A1 - Salvador, Ellaine A1 - Burek, Malgorzata A1 - Förster, Carola Y. T1 - Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade JF - Frontiers in Cellular Neuroscience N2 - The blood-brain barrier (BBB), made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI), cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD) is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH) and nitric oxide (NO) into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (I L)-6, IL-1\(\alpha\) chemokine (C-C motif) ligand 2 (CCL2) and tumor necrosis factor (TNF)-\(\alpha\) also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glutl expression, and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models. KW - receptor antagonist KW - cytokine expression KW - tight junctions KW - cell stretch KW - calcium level KW - nitric oxide KW - endothelial cells KW - necrosis factor alpha KW - barrier properties KW - cerebral ischemia KW - nervous system KW - CNS injury KW - blood brain barrier KW - cEND KW - astrocytes KW - traumatic brain injury KW - oxygen-glucose deprivation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148255 VL - 9 IS - 323 ER - TY - JOUR A1 - Salvador, Ellaine A1 - Burek, Malgorzata A1 - Löhr, Mario A1 - Nagai, Michiaki A1 - Hagemann, Carsten A1 - Förster, Carola Y. T1 - Senescence and associated blood-brain barrier alterations in vitro JF - Histochemistry and Cell Biology N2 - Progressive deterioration of the central nervous system (CNS) is commonly associated with aging. An important component of the neurovasculature is the blood-brain barrier (BBB), majorly made up of endothelial cells joined together by intercellular junctions. The relationship between senescence and changes in the BBB has not yet been thoroughly explored. Moreover, the lack of in vitro models for the study of the mechanisms involved in those changes impede further and more in-depth investigations in the field. For this reason, we herein present an in vitro model of the senescent BBB and an initial attempt to identify senescence-associated alterations within. KW - senescence KW - in vitro model KW - aging KW - CNS diseases KW - blood–brain barrier Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267435 SN - 1432-119X VL - 156 IS - 3 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Skorb, Ekaterina V. A1 - Förster, Carola Y. A1 - Dandekar, Thomas T1 - Scaffold Searching of FDA and EMA-Approved Drugs Identifies Lead Candidates for Drug Repurposing in Alzheimer’s Disease JF - Frontiers in Chemistry N2 - Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have consumed a significant amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA), European Medicines Agency (EMA), or Worldwide for another indication is a more rapid and less expensive option. Therefore, we apply the scaffold searching approach based on known amyloid-beta (Aβ) inhibitor tramiprosate to screen the DrugCentral database (n = 4,642) of clinically tested drugs. As a result, menadione bisulfite and camphotamide substances with protrombogenic and neurostimulation/cardioprotection effects were identified as promising Aβ inhibitors with an improved binding affinity (ΔGbind) and blood-brain barrier permeation (logBB). Finally, the data was also confirmed by molecular dynamics simulations using implicit solvation, in particular as Molecular Mechanics Generalized Born Surface Area (MM-GBSA) model. Overall, the proposed in silico pipeline can be implemented through the early stage rational drug design to nominate some lead candidates for AD, which will be further validated in vitro and in vivo, and, finally, in a clinical trial. KW - scaffold search KW - approved drugs KW - drug repurposing KW - alzheimer's disease KW - chemical similarity KW - molecular modeling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248703 SN - 2296-2646 VL - 9 ER - TY - JOUR A1 - Karnati, Srikanth A1 - Guntas, Gulcan A1 - Rajendran, Ranjithkumar A1 - Shityakov, Sergey A1 - Höring, Marcus A1 - Liebisch, Gerhard A1 - Kosanovic, Djuro A1 - Ergün, Süleyman A1 - Nagai, Michiaki A1 - Förster, Carola Y. T1 - Quantitative lipidomic analysis of Takotsubo syndrome patients' serum JF - Frontiers in Cardiovascular Medicine N2 - Takotsubo syndrome (TTS), also known as the transient left ventricular apical ballooning syndrome, is in contemporary times known as novel acute cardiac syndrome. It is characterized by transient left ventricular apical akinesis and hyperkinesis of the basal left ventricular portions. Although the precise etiology of TTS is unknown, events like the sudden release of stress hormones, such as the catecholamines and the increased inflammatory status might be plausible causes leading to the cardiovascular pathologies. Recent studies have highlighted that an imbalance in lipid accumulation might promote a deviant immune response as observed in TTS. However, there is no information on comprehensive profiling of serum lipids of TTS patients. Therefore, we investigated a detailed quantitative lipid analysis of TTS patients using ES-MSI. Our results showed significant differences in the majority of lipid species composition in the TTS patients compared to the control group. Furthermore, the computational analyses presented was able to link the altered lipids to the pro-inflammatory cytokines and disseminate possible mechanistic pathways involving TNFα and IL-6. Taken together, our study provides an extensive quantitative lipidome of TTS patients, which may provide a valuable Pre-diagnostic tool. This would facilitate the elucidation of the underlying mechanisms of the disease and to prevent the development of TTS in the future. KW - TTS KW - inflammation KW - lipids KW - TNF-α KW - IL6 KW - PIK3R1 KW - NF-kappa-B KW - phosphatidylinositol Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270832 SN - 2297-055X VL - 9 IS - 797154 ER - TY - JOUR A1 - Neuhaus, Winfried A1 - Schlundt, Marian A1 - Fehrholz, Markus A1 - Ehrke, Alexander A1 - Kunzmann, Steffen A1 - Liebner, Stefan A1 - Speer, Christian P. A1 - Förster, Carola Y. T1 - Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups JF - PLoS One N2 - Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation. KW - endothelial cells KW - protein expression KW - central nervous system KW - mouse models KW - pregnancy KW - tight junctions KW - sheep KW - angiogenesis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125471 VL - 10 IS - 8 ER - TY - JOUR A1 - Neuhaus, Winfried A1 - Schlundt, Marian A1 - Fehrholz, Markus A1 - Ehrke, Alexander A1 - Kunzmann, Steffen A1 - Liebner, Stefan A1 - Speer, Christian P. A1 - Förster, Carola Y. T1 - Multiple antenatal dexamethasone treatment alters brain vessel differentiation in newborn mouse pups JF - PLoS ONE N2 - Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation. KW - preterm birth KW - fetal lung KW - corticosteroids KW - glucocorticoids KW - exposure KW - endothelial cells KW - in vitro KW - barrier KW - expression KW - rat Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148268 VL - 10 IS - 8 ER - TY - JOUR A1 - Förster, Carola Y. A1 - Shityakov, Sergey A1 - Scheper, Verena A1 - Lenarz, Thomas T1 - Linking cerebrovascular dysfunction to age-related hearing loss and Alzheimer’s disease — are systemic approaches for diagnosis and therapy required? JF - Biomolecules N2 - Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction, cognitive decline, and the accumulation of amyloid β peptide (Aβ) in the brain and tau-related lesions in neurons termed neurofibrillary tangles (NFTs). Aβ deposits and NFT formation are the central pathological hallmarks in AD brains, and the majority of AD cases have been shown to exhibit a complex combination of systemic comorbidities. While AD is the foremost common cause of dementia in the elderly, age-related hearing loss (ARHL) is the most predominant sensory deficit in the elderly. During aging, chronic inflammation and resulting endothelial dysfunction have been described and might be key contributors to AD; we discuss an intriguing possible link between inner ear strial microvascular pathology and blood–brain barrier pathology and present ARHL as a potentially modifiable and treatable risk factor for AD development. We present compelling evidence that ARHL might well be seen as an important risk factor in AD development: progressive hearing impairment, leading to social isolation, and its comorbidities, such as frailty, falls, and late-onset depression, link ARHL with cognitive decline and increased risk of dementia, rendering it tempting to speculate that ARHL might be a potential common molecular and pathological trigger for AD. Additionally, one could speculate that amyloid-beta might damage the blood–labyrinth barrier as it does to the blood–brain barrier, leading to ARHL pathology. Finally, there are options for the treatment of ARHL by targeted neurotrophic factor supplementation to the cochlea to improve cognitive outcomes; they can also prevent AD development and AD-related comorbidity in the future. KW - Alzheimer’s disease KW - age-related hearing loss KW - neurovasculature KW - blood–brain barrier KW - blood–labyrinth barrier KW - spiral ganglion neuron KW - pharmacotherapy KW - neurotrophic factor KW - inner ear Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297552 SN - 2218-273X VL - 12 IS - 11 ER -