TY - JOUR A1 - Burek, Malgorzata A1 - Burmester, Sandra A1 - Salvador, Ellaine A1 - Möller-Ehrlich, Kerstin A1 - Schneider, Reinhard A1 - Roewer, Norbert A1 - Nagai, Michiaki A1 - Förster, Carola Y. T1 - Kidney Ischemia/Reperfusion Injury Induces Changes in the Drug Transporter Expression at the Blood–Brain Barrier in vivo and in vitro JF - Frontiers in Physiology N2 - Ischemia/reperfusion injury is a major cause of acute kidney injury (AKI). AKI is characterized by a sudden decrease in kidney function, systemic inflammation, oxidative stress, and dysregulation of the sodium, potassium, and water channels. While AKI leads to uremic encephalopathy, epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. To get more insights into kidney–brain crosstalk, we have created an in vitro co-culture model based on human kidney cells of the proximal tubule (HK-2) and brain microvascular endothelial cells (BMEC). The HK-2 cell line was grown to confluence on 6-well plates and exposed to oxygen/glucose deprivation (OGD) for 4 h. Control HK-2 cells were grown under normal conditions. The BMEC cell line cerebED was grown to confluence on transwells with 0.4 μm pores. The transwell filters seeded and grown to confluence with cereEND were inserted into the plates with HK-2 cells with or without OGD treatment. In addition, cerebEND were left untreated or treated with uremic toxins, indole-3-acetic acid (IAA) and indoxyl sulfate (IS). The protein and mRNA expression of selected BBB-typical influx transporters, efflux transporters, cellular receptors, and tight junction proteins was measured in BMECs. To validate this in vitro model of kidney–brain interaction, we isolated brain capillaries from mice exposed to bilateral renal ischemia (30 min)/reperfusion injury (24 h) and measured mRNA and protein expression as described above. Both in vitro and in vivo systems showed similar changes in the expression of drug transporters, cellular receptors, and tight junction proteins. Efflux pumps, in particular Abcb1b, Abcc1, and Abcg2, have shown increased expression in our model. Thus, our in vitro co-culture system can be used to study the cellular mechanism of kidney and brain crosstalk in renal ischemia/reperfusion injury. KW - kidney ischemia/reperfusion injury KW - brain pathology KW - blood–brain barrier KW - drug transporter KW - tight junctions Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216413 SN - 1664-042X VL - 11 ER - TY - JOUR A1 - Burek, Malgorzata A1 - Salvador, Ellaine A1 - Förster, Carola Y. T1 - Generation of an Immortalized Murine Brain Microvascular Endothelial Cell Line as an In Vitro Blood Brain Barrier Model JF - Journal of Visualized Experiments N2 - Epithelial and endothelial cells (EC) are building paracellular barriers which protect the tissue from the external and internal environment. The blood-brain barrier (BBB) consisting of EC, astrocyte end-feet, pericytes and the basal membrane is responsible for the protection and homeostasis of the brain parenchyma. In vitro BBB models are common tools to study the structure and function of the BBB at the cellular level. A considerable number of different in vitro BBB models have been established for research in different laboratories to date. Usually, the cells are obtained from bovine, porcine, rat or mouse brain tissue (discussed in detail in the review by Wilhelm et al. 1). Human tissue samples are available only in a restricted number of laboratories or companies 2,3. While primary cell preparations are time consuming and the EC cultures can differ from batch to batch, the establishment of immortalized EC lines is the focus of scientific interest. Here, we present a method for establishing an immortalized brain microvascular EC line from neonatal mouse brain. We describe the procedure step-by-step listing the reagents and solutions used. The method established by our lab allows the isolation of a homogenous immortalized endothelial cell line within four to five weeks. The brain microvascular endothelial cell lines termed cEND 4 (from cerebral cortex) and cerebEND 5 (from cerebellar cortex), were isolated according to this procedure in the Förster laboratory and have been effectively used for explanation of different physiological and pathological processes at the BBB. Using cEND and cerebEND we have demonstrated that these cells respond to glucocorticoid- 4,6-9 and estrogen-treatment 10 as well as to pro-infammatory mediators, such as TNFalpha 5,8. Moreover, we have studied the pathology of multiple sclerosis 11 and hypoxia 12,13 on the EC-level. The cEND and cerebEND lines can be considered as a good tool for studying the structure and function of the BBB, cellular responses of ECs to different stimuli or interaction of the EC with lymphocytes or cancer cells. KW - in vitro cell culture models KW - blood-brain barrier KW - neuroscience KW - immunology KW - brain KW - microvascular endothelial cells KW - immortalization KW - cEND Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126702 VL - 66 IS - e4022 ER - TY - JOUR A1 - Förster, Carola Y. A1 - Shityakov, Sergey A1 - Scheper, Verena A1 - Lenarz, Thomas T1 - Linking cerebrovascular dysfunction to age-related hearing loss and Alzheimer’s disease — are systemic approaches for diagnosis and therapy required? JF - Biomolecules N2 - Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction, cognitive decline, and the accumulation of amyloid β peptide (Aβ) in the brain and tau-related lesions in neurons termed neurofibrillary tangles (NFTs). Aβ deposits and NFT formation are the central pathological hallmarks in AD brains, and the majority of AD cases have been shown to exhibit a complex combination of systemic comorbidities. While AD is the foremost common cause of dementia in the elderly, age-related hearing loss (ARHL) is the most predominant sensory deficit in the elderly. During aging, chronic inflammation and resulting endothelial dysfunction have been described and might be key contributors to AD; we discuss an intriguing possible link between inner ear strial microvascular pathology and blood–brain barrier pathology and present ARHL as a potentially modifiable and treatable risk factor for AD development. We present compelling evidence that ARHL might well be seen as an important risk factor in AD development: progressive hearing impairment, leading to social isolation, and its comorbidities, such as frailty, falls, and late-onset depression, link ARHL with cognitive decline and increased risk of dementia, rendering it tempting to speculate that ARHL might be a potential common molecular and pathological trigger for AD. Additionally, one could speculate that amyloid-beta might damage the blood–labyrinth barrier as it does to the blood–brain barrier, leading to ARHL pathology. Finally, there are options for the treatment of ARHL by targeted neurotrophic factor supplementation to the cochlea to improve cognitive outcomes; they can also prevent AD development and AD-related comorbidity in the future. KW - Alzheimer’s disease KW - age-related hearing loss KW - neurovasculature KW - blood–brain barrier KW - blood–labyrinth barrier KW - spiral ganglion neuron KW - pharmacotherapy KW - neurotrophic factor KW - inner ear Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297552 SN - 2218-273X VL - 12 IS - 11 ER - TY - JOUR A1 - Karnati, Srikanth A1 - Guntas, Gulcan A1 - Rajendran, Ranjithkumar A1 - Shityakov, Sergey A1 - Höring, Marcus A1 - Liebisch, Gerhard A1 - Kosanovic, Djuro A1 - Ergün, Süleyman A1 - Nagai, Michiaki A1 - Förster, Carola Y. T1 - Quantitative lipidomic analysis of Takotsubo syndrome patients' serum JF - Frontiers in Cardiovascular Medicine N2 - Takotsubo syndrome (TTS), also known as the transient left ventricular apical ballooning syndrome, is in contemporary times known as novel acute cardiac syndrome. It is characterized by transient left ventricular apical akinesis and hyperkinesis of the basal left ventricular portions. Although the precise etiology of TTS is unknown, events like the sudden release of stress hormones, such as the catecholamines and the increased inflammatory status might be plausible causes leading to the cardiovascular pathologies. Recent studies have highlighted that an imbalance in lipid accumulation might promote a deviant immune response as observed in TTS. However, there is no information on comprehensive profiling of serum lipids of TTS patients. Therefore, we investigated a detailed quantitative lipid analysis of TTS patients using ES-MSI. Our results showed significant differences in the majority of lipid species composition in the TTS patients compared to the control group. Furthermore, the computational analyses presented was able to link the altered lipids to the pro-inflammatory cytokines and disseminate possible mechanistic pathways involving TNFα and IL-6. Taken together, our study provides an extensive quantitative lipidome of TTS patients, which may provide a valuable Pre-diagnostic tool. This would facilitate the elucidation of the underlying mechanisms of the disease and to prevent the development of TTS in the future. KW - TTS KW - inflammation KW - lipids KW - TNF-α KW - IL6 KW - PIK3R1 KW - NF-kappa-B KW - phosphatidylinositol Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270832 SN - 2297-055X VL - 9 IS - 797154 ER - TY - JOUR A1 - Neuhaus, Winfried A1 - Burek, Malgorzata A1 - Djuzenova, Cholpon C A1 - Thal, Serge C A1 - Koepsell, Hermann A1 - Roewer, Norbert A1 - Förster, Carola Y T1 - Addition of NMDA-receptor antagonist MK801 during oxygen/glucose deprivation moderately attenuates the up-regulation of glucose uptake after subsequent reoxygenation in brain endothelial cells N2 - During stroke the blood–brain barrier (BBB) is damaged which can result in vasogenic brain edema and inflammation. The reduced blood supply leads to decreased delivery of oxygen and glucose to affected areas of the brain. Oxygen and glucose deprivation (OGD) can cause upregulation of glucose uptake of brain endothelial cells. In this letter, we investigated the influence of MK801, a non-competitive inhibitor of the NMDA-receptor, on the regulation of the glucose uptake and of the main glucose transporters glut1 and sglt1 in murine BBB cell line cerebEND during OGD. mRNA expression of glut1 was upregulated 68.7- fold after 6 h OGD, which was significantly reduced by 10 μM MK801 to 28.9-fold. Sglt1 mRNA expression decreased during OGD which was further reduced by MK801. Glucose uptake was significantly increased up to 907% after 6 h OGD and was still higher (210%) after the 20 h reoxygenation phase compared to normoxia. Ten micromolar MK801 during OGD was able to reduce upregulated glucose uptake after OGD and reoxygenation significantly. Presence of several NMDAR subunits was proven on the mRNA level in cerebEND cells. Furthermore, it was shown that NMDAR subunit NR1 was upregulated during OGD and that this was inhibitable by MK801. In conclusion, the addition of MK801 during the OGD phase reduced significantly the glucose uptake after the subsequent reoxygenation phase in brain endothelial cells. KW - Blut-Hirn-Schranke KW - Schlaganfall KW - Glucosetransportproteine KW - NMDA-Antagonist KW - NMDA-Rezeptor KW - blood-brain barrier KW - MK801 KW - NMDAR KW - stroke KW - glut1 KW - sglt1 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67241 ER - TY - JOUR A1 - Neuhaus, Winfried A1 - Schlundt, Marian A1 - Fehrholz, Markus A1 - Ehrke, Alexander A1 - Kunzmann, Steffen A1 - Liebner, Stefan A1 - Speer, Christian P. A1 - Förster, Carola Y. T1 - Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups JF - PLoS One N2 - Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation. KW - endothelial cells KW - protein expression KW - central nervous system KW - mouse models KW - pregnancy KW - tight junctions KW - sheep KW - angiogenesis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125471 VL - 10 IS - 8 ER - TY - JOUR A1 - Neuhaus, Winfried A1 - Schlundt, Marian A1 - Fehrholz, Markus A1 - Ehrke, Alexander A1 - Kunzmann, Steffen A1 - Liebner, Stefan A1 - Speer, Christian P. A1 - Förster, Carola Y. T1 - Multiple antenatal dexamethasone treatment alters brain vessel differentiation in newborn mouse pups JF - PLoS ONE N2 - Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation. KW - preterm birth KW - fetal lung KW - corticosteroids KW - glucocorticoids KW - exposure KW - endothelial cells KW - in vitro KW - barrier KW - expression KW - rat Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148268 VL - 10 IS - 8 ER - TY - JOUR A1 - Reschke, Moritz A1 - Salvador, Ellaine A1 - Schlegel, Nicolas A1 - Burek, Malgorzata A1 - Karnati, Srikanth A1 - Wunder, Christian A1 - Förster, Carola Y. T1 - Isosteviol sodium (STVNA) reduces pro-inflammatory cytokine IL-6 and GM-CSF in an in vitro murine stroke model of the blood–brain barrier (BBB) JF - Pharmaceutics N2 - Early treatment with glucocorticoids could help reduce both cytotoxic and vasogenic edema, leading to improved clinical outcome after stroke. In our previous study, isosteviol sodium (STVNA) demonstrated neuroprotective effects in an in vitro stroke model, which utilizes oxygen-glucose deprivation (OGD). Herein, we tested the hypothesis that STVNA can activate glucocorticoid receptor (GR) transcriptional activity in brain microvascular endothelial cells (BMECs) as previously published for T cells. STVNA exhibited no effects on transcriptional activation of the glucocorticoid receptor, contrary to previous reports in Jurkat cells. However, similar to dexamethasone, STVNA inhibited inflammatory marker IL-6 as well as granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. Based on these results, STVNA proves to be beneficial as a possible prevention and treatment modality for brain ischemia-reperfusion injury-induced blood–brain barrier (BBB) dysfunction. KW - IL-6 KW - ischemia KW - isosteviol sodium (STVNA) KW - dexamethasone KW - glucocorticoid receptor KW - cerebEND Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286275 SN - 1999-4923 VL - 14 IS - 9 ER - TY - JOUR A1 - Salvador, Ellaine A1 - Burek, Malgorzata A1 - Förster, Carola Y. T1 - Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade JF - Frontiers in Cellular Neuroscience N2 - The blood-brain barrier (BBB), made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI), cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD) is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH) and nitric oxide (NO) into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (I L)-6, IL-1\(\alpha\) chemokine (C-C motif) ligand 2 (CCL2) and tumor necrosis factor (TNF)-\(\alpha\) also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glutl expression, and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models. KW - receptor antagonist KW - cytokine expression KW - tight junctions KW - cell stretch KW - calcium level KW - nitric oxide KW - endothelial cells KW - necrosis factor alpha KW - barrier properties KW - cerebral ischemia KW - nervous system KW - CNS injury KW - blood brain barrier KW - cEND KW - astrocytes KW - traumatic brain injury KW - oxygen-glucose deprivation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148255 VL - 9 IS - 323 ER - TY - JOUR A1 - Salvador, Ellaine A1 - Burek, Malgorzata A1 - Löhr, Mario A1 - Nagai, Michiaki A1 - Hagemann, Carsten A1 - Förster, Carola Y. T1 - Senescence and associated blood-brain barrier alterations in vitro JF - Histochemistry and Cell Biology N2 - Progressive deterioration of the central nervous system (CNS) is commonly associated with aging. An important component of the neurovasculature is the blood-brain barrier (BBB), majorly made up of endothelial cells joined together by intercellular junctions. The relationship between senescence and changes in the BBB has not yet been thoroughly explored. Moreover, the lack of in vitro models for the study of the mechanisms involved in those changes impede further and more in-depth investigations in the field. For this reason, we herein present an in vitro model of the senescent BBB and an initial attempt to identify senescence-associated alterations within. KW - senescence KW - in vitro model KW - aging KW - CNS diseases KW - blood–brain barrier Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267435 SN - 1432-119X VL - 156 IS - 3 ER -