TY - JOUR A1 - Yu, Sung-Huan A1 - Vogel, Jörg A1 - Förstner, Konrad U. T1 - ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes JF - GigaScience N2 - To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/. KW - genome annotation KW - RNA-seq KW - transcriptomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178942 VL - 7 ER - TY - JOUR A1 - Balasubramanian, Srikkanth A1 - Skaf, Joseph A1 - Holzgrabe, Ulrike A1 - Bharti, Richa A1 - Förstner, Konrad U. A1 - Ziebuhr, Wilma A1 - Humeida, Ute H. A1 - Abdelmohsen, Usama R. A1 - Oelschlaeger, Tobias A. T1 - A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation JF - Frontiers in Microbiology N2 - Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 \(\mu\)g/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 \(\mu\)g/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs. KW - marine sponges KW - Streptomyces KW - Staphylococci KW - device-related infections KW - bioassay-guided fractionation KW - transcriptome Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221408 VL - 9 ER - TY - JOUR A1 - Bury, Susanne A1 - Soundararajan, Manonmani A1 - Bharti, Richa A1 - von Bünau, Rudolf A1 - Förstner, Konrad U. A1 - Oelschlaeger, Tobias A. T1 - The probiotic escherichia coli strain Nissle 1917 combats lambdoid bacteriophages stx and lambda JF - Frontiers in Microbiology N2 - Shiga toxin (Stx) producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC) are the major cause of foodborne illness in humans. In vitro studies showed the probiotic Escherichia coil strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype 0104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coll strains which got infected by stx2-encoding lambdoid phages turning the E. coil into lysogenic and subsequently Stx producing strains. Since antibiotics induce stx genes and Stx production, EHEC infected persons are not recommended to be treated with antibiotics. Therefore, EcN might be an alternative medication. However, because even commensal E. coli strains might be converted into Stx-producers after becoming host to a stx encoding prophage, we tested EcN for stx-phage genome integration. Our experiments revealed the resistance of EcN toward not only stx-phages but also against lambda-phages. This resistance was not based on the lack of or by mutated phage receptors. Rather it involved the expression of a phage repressor (pr) gene of a defective prophage in EcN which was able to partially protect E. coli K-12 strain MG1655 against stx and lambda phage infection. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx- as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx-phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people. KW - probiotic KW - E. coli Nissle 1917 KW - EHEC KW - Shiga toxin producing E. coli KW - stx-phages KW - lambda-phages KW - lambdoid prophage KW - LamB Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221960 VL - 9 ER - TY - JOUR A1 - Müller, Laura S. M. A1 - Cosentino, Raúl O. A1 - Förstner, Konrad U. A1 - Guizetti, Julien A1 - Wedel, Carolin A1 - Kaplan, Noam A1 - Janzen, Christian J. A1 - Arampatzi, Panagiota A1 - Vogel, Jörg A1 - Steinbiss, Sascha A1 - Otto, Thomas D. A1 - Saliba, Antoine-Emmanuel A1 - Sebra, Robert P. A1 - Siegel, T. Nicolai T1 - Genome organization and DNA accessibility control antigenic variation in trypanosomes JF - Nature N2 - Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses—Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing—that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation. KW - histone variants KW - genome architecture KW - single molecule real time (SMRT) KW - brucei genome KW - distance-dependent decay Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224265 VL - 563 ER -