TY - JOUR A1 - Čuklina, Jelena A1 - Hahn, Julia A1 - Imakaev, Maxim A1 - Omasits, Ulrich A1 - Förstner, Konrad U. A1 - Ljubimov, Nikolay A1 - Goebel, Melanie A1 - Pessi, Gabriella A1 - Fischer, Hans-Martin A1 - Ahrens, Christian H. A1 - Gelfand, Mikhail S. A1 - Evguenieva-Hackenberg, Elena T1 - Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation JF - BMC Genomics N2 - Background Differential RNA-sequencing (dRNA-seq) is indispensable for determination of primary transcriptomes. However, using dRNA-seq data to map transcriptional start sites (TSSs) and promoters genome-wide is a bioinformatics challenge. We performed dRNA-seq of Bradyrhizobium japonicum USDA 110, the nitrogen-fixing symbiont of soybean, and developed algorithms to map TSSs and promoters. Results A specialized machine learning procedure for TSS recognition allowed us to map 15,923 TSSs: 14,360 in free-living bacteria, 4329 in symbiosis with soybean and 2766 in both conditions. Further, we provide proteomic evidence for 4090 proteins, among them 107 proteins corresponding to new genes and 178 proteins with N-termini different from the existing annotation (72 and 109 of them with TSS support, respectively). Guided by proteomics evidence, previously identified TSSs and TSSs experimentally validated here, we assign a score threshold to flag 14 % of the mapped TSSs as a class of lower confidence. However, this class of lower confidence contains valid TSSs of low-abundant transcripts. Moreover, we developed a de novo algorithm to identify promoter motifs upstream of mapped TSSs, which is publicly available, and found motifs mainly used in symbiosis (similar to RpoN-dependent promoters) or under both conditions (similar to RpoD-dependent promoters). Mapped TSSs and putative promoters, proteomic evidence and updated gene annotation were combined into an annotation file. Conclusions The genome-wide TSS and promoter maps along with the extended genome annotation of B. japonicum represent a valuable resource for future systems biology studies and for detailed analyses of individual non-coding transcripts and ORFs. Our data will also provide new insights into bacterial gene regulation during the agriculturally important symbiosis between rhizobia and legumes. KW - Bradyrhizobium KW - RNA-seq KW - Promoter prediction KW - Genome re-annotation KW - Internal transcription start site KW - Nodule KW - Transcription start site KW - Proteogenomics KW - Antisense RNA Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164565 VL - 17 ER - TY - JOUR A1 - Meier, Doreen A1 - Kruse, Janis A1 - Buttlar, Jann A1 - Friedrich, Michael A1 - Zenk, Fides A1 - Boesler, Benjamin A1 - Forstner, Konrad U. A1 - Hammann, Christian A1 - Nellen, Wolfgang T1 - Analysis of the Microprocessor in Dictyostelium: The Role of RbdB, a dsRNA Binding Protein JF - PLoS Genetics N2 - We identified the dsRNA binding protein RbdB as an essential component in miRNA processing in Dictyostelium discoideum. RbdB is a nuclear protein that accumulates, together with Dicer B, in nucleolar foci reminiscent of plant dicing bodies. Disruption of rbdB results in loss of miRNAs and accumulation of primary miRNAs. The phenotype can be rescued by ectopic expression of RbdB thus allowing for a detailed analysis of domain function. The lack of cytoplasmic dsRBD proteins involved in miRNA processing, suggests that both processing steps take place in the nucleus thus resembling the plant pathway. However, we also find features e.g. in the domain structure of Dicer which suggest similarities to animals. Reduction of miRNAs in the rbdB- strain and their increase in the Argonaute A knock out allowed the definition of new miRNAs one of which appears to belong to a new non-canonical class. KW - microprocessor KW - Dictyostelium discoideum KW - dsRNA binding protein KW - RbdB Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166687 VL - 12 IS - 6 ER -