TY - JOUR A1 - Jarick, I. A1 - Volckmar, A. L. A1 - Pütter, C. A1 - Pechlivanis, S. A1 - Nguyen, T. T. A1 - Dauvermann, M. R. A1 - Beck, S. A1 - Albayrak, Ö. A1 - Scherag, S. A1 - Gilsbach, S. A1 - Cichon, S. A1 - Hoffmann, P. A1 - Degenhardt, F. A1 - Nöthen, M. M. A1 - Schreiber, S. A1 - Wichmann, H. E. A1 - Jöckel, K. H. A1 - Heinrich, J. A1 - Tiesler, C. M. T. A1 - Faraone, S. V. A1 - Walitza, S. A1 - Sinzig, J. A1 - Freitag, C. A1 - Meyer, J. A1 - Herpertz-Dahlmann, B. A1 - Lehmkuhl, G. A1 - Renner, T. J. A1 - Warnke, A. A1 - Romanos, M. A1 - Lesch, K. P. A1 - Reif, A. A1 - Schimmelmann, B. G. A1 - Hebebrand, J. A1 - Scherag, A. A1 - Hinney, A. T1 - Genome-wide analysis of rare copy number variations reveals PARK2 as a candidate gene for attention-deficit/hyperactivity disorder JF - Molecular Psychiatry N2 - Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neurodevelopmental disorder. Genetic loci have not yet been identified by genome-wide association studies. Rare copy number variations (CNVs), such as chromosomal deletions or duplications, have been implicated in ADHD and other neurodevelopmental disorders. To identify rare (frequency ≤1%) CNVs that increase the risk of ADHD, we performed a whole-genome CNV analysis based on 489 young ADHD patients and 1285 adult population-based controls and identified one significantly associated CNV region. In tests for a global burden of large (>500 kb) rare CNVs, we observed a nonsignificant (P=0.271) 1.126-fold enriched rate of subjects carrying at least one such CNV in the group of ADHD cases. Locus-specific tests of association were used to assess if there were more rare CNVs in cases compared with controls. Detected CNVs, which were significantly enriched in the ADHD group, were validated by quantitative (q)PCR. Findings were replicated in an independent sample of 386 young patients with ADHD and 781 young population-based healthy controls. We identified rare CNVs within the parkinson protein 2 gene (PARK2) with a significantly higher prevalence in ADHD patients than in controls \((P=2.8 × 10^{-4})\) after empirical correction for genome-wide testing). In total, the PARK2 locus (chr 6: 162 659 756-162 767 019) harboured three deletions and nine duplications in the ADHD patients and two deletions and two duplications in the controls. By qPCR analysis, we validated 11 of the 12 CNVs in ADHD patients \((P=1.2 × 10^{-3})\) after empirical correction for genome-wide testing). In the replication sample, CNVs at the PARK2 locus were found in four additional ADHD patients and one additional control \((P=4.3 × 10^{-2})\). Our results suggest that copy number variants at the PARK2 locus contribute to the genetic susceptibility of ADHD. Mutations and CNVs in PARK2 are known to be associated with Parkinson disease. KW - children KW - ADHD KW - CNVs KW - GWAS KW - PARK2 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121131 VL - 19 IS - 19 ER - TY - JOUR A1 - Franke, B. A1 - Faraone, S. V. A1 - Asherson, P. A1 - Buitelaar, J. A1 - Bau, C. H. D. A1 - Ramos-Quiroga, J. A. A1 - Mick, E. A1 - Grevet, E. H. A1 - Johansson, S. A1 - Haavik, J. A1 - Lesch, K.-P. A1 - Cormand, B. A1 - Reif, A. T1 - The genetics of attention deficit/hyperactivity disorder in adults, a review JF - Molecular Psychiatry N2 - The adult form of attention deficit/hyperactivity disorder (aADHD) has a prevalence of up to 5% and is the most severe long-term outcome of this common neurodevelopmental disorder. Family studies in clinical samples suggest an increased familial liability for aADHD compared with childhood ADHD (cADHD), whereas twin studies based on self-rated symptoms in adult population samples show moderate heritability estimates of 30–40%. However, using multiple sources of information, the heritability of clinically diagnosed aADHD and cADHD is very similar. Results of candidate gene as well as genome-wide molecular genetic studies in aADHD samples implicate some of the same genes involved in ADHD in children, although in some cases different alleles and different genes may be responsible for adult versus childhood ADHD. Linkage studies have been successful in identifying loci for aADHD and led to the identification of LPHN3 and CDH13 as novel genes associated with ADHD across the lifespan. In addition, studies of rare genetic variants have identified probable causative mutations for aADHD. Use of endophenotypes based on neuropsychology and neuroimaging, as well as next-generation genome analysis and improved statistical and bioinformatic analysis methods hold the promise of identifying additional genetic variants involved in disease etiology. Large, international collaborations have paved the way for well-powered studies. Progress in identifying aADHD risk genes may provide us with tools for the prediction of disease progression in the clinic and better treatment, and ultimately may help to prevent persistence of ADHD into adulthood. KW - IMpACT KW - persistent ADHD KW - molecular genetics KW - heritability KW - endophenotype Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124677 VL - 17 ER -