TY - JOUR A1 - Röhrich, Christian Rene A1 - Ngwa, Che Julius A1 - Wiesner, Jochen A1 - Schmidtberg, Henrike A1 - Degenkolb, Thomas A1 - Kollewe, Christian A1 - Fischer, Rainer A1 - Pradel, Gabriele A1 - Vilcinskas, Andreas T1 - Harmonine, a defence compound from the harlequin ladybird, inhibits mycobacterial growth and demonstrates multi-stage antimalarial activity JF - Biology Letters N2 - The harlequin ladybird beetle Harmonia axyridis has been introduced in many countries as a biological control agent, but has become an invasive species threatening the biodiversity of native ladybirds. Its invasive success has been attributed to its vigorous resistance against diverse pathogens. This study demonstrates that harmonine ((17R,9Z)-1,17-diaminooctadec-9-ene), which is present in H. axyridis haemolymph, displays broad-spectrum antimicrobial activity that includes human pathogens. Antibacterial activity is most pronounced against fast-growing mycobacteria and Mycobacterium tuberculosis, and the growth of both chloroquine-sensitive and -resistant Plasmodium falciparum strains is inhibited. Harmonine displays gametocytocidal activity, and inhibits the exflagellation of microgametocytes and zygote formation. In an Anopheles stephensi mosquito feeding model, harmonine displays transmission-blocking activity. KW - insect immunity KW - antimicrobial activity KW - harmonine KW - harmonia axyridis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127079 VL - 8 ER - TY - JOUR A1 - Ngwa, Che Julius A1 - Scheuermayer, Matthias A1 - Mair, Gunnar Rudolf A1 - Kern, Selina A1 - Brügl, Thomas A1 - Wirth, Christine Clara A1 - Aminake, Makoah Nigel A1 - Wiesner, Jochen A1 - Fischer, Rainer A1 - Vilcinskas, Andreas A1 - Pradel, Gabriele T1 - Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito JF - BMC Genomics N2 - Background: The transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by dormant sexual precursor cells, the gametocytes, which become activated in the mosquito midgut. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they play a crucial role in spreading the tropical disease. The human-to-mosquito transmission triggers important molecular changes in the gametocytes, which initiate gametogenesis and prepare the parasite for life-cycle progression in the insect vector. Results: To better understand gene regulations during the initial phase of malaria parasite transmission, we focused on the transcriptome changes that occur within the first half hour of parasite development in the mosquito. Comparison of mRNA levels of P. falciparum gametocytes before and 30 min following activation using suppression subtractive hybridization (SSH) identified 126 genes, which changed in expression during gametogenesis. Among these, 17.5% had putative functions in signaling, 14.3% were assigned to cell cycle and gene expression, 8.7% were linked to the cytoskeleton or inner membrane complex, 7.9% were involved in proteostasis and 6.4% in metabolism, 12.7% were cell surface-associated proteins, 11.9% were assigned to other functions, and 20.6% represented genes of unknown function. For 40% of the identified genes there has as yet not been any protein evidence. For a subset of 27 genes, transcript changes during gametogenesis were studied in detail by real-time RT-PCR. Of these, 22 genes were expressed in gametocytes, and for 15 genes transcript expression in gametocytes was increased compared to asexual blood stage parasites. Transcript levels of seven genes were particularly high in activated gametocytes, pointing at functions downstream of gametocyte transmission to the mosquito. For selected genes, a regulated expression during gametogenesis was confirmed on the protein level, using quantitative confocal microscopy. Conclusions: The obtained transcriptome data demonstrate the regulations of gene expression immediately following malaria parasite transmission to the mosquito. Our findings support the identification of proteins important for sexual reproduction and further development of the mosquito midgut stages and provide insights into the genetic basis of the rapid adaption of Plasmodium to the insect vector. KW - parasitophorous vacuole KW - sexual development KW - gametocyte KW - transcriptome KW - signal peptide peptidase KW - host cell interface KW - alpha-tubulin-II KW - life-cycle KW - protein kinases KW - in-vitro KW - erythroyte invation KW - blocking antibodies KW - malaria KW - plasmodium falciparum KW - gametogenesis KW - mosquito KW - transmission Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121905 SN - 1471-2164 VL - 14 IS - 256 ER - TY - JOUR A1 - Wirth, Christine C. A1 - Glushakova, Svetlana A1 - Scheuermayer, Matthias A1 - Repnik, Urska A1 - Garg, Swatl A1 - Schaack, Dominik A1 - Kachman, Marika M. A1 - Weißbach, Tim A1 - Zimmerberg, Joshua A1 - Dandekar, Thomas A1 - Griffiths, Gareth A1 - Chitnis, Chetan E. A1 - Singh, Shallja A1 - Fischer, Rainer A1 - Pradel, Gabriele T1 - Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes JF - Cellular Microbiology N2 - Egress of malaria parasites from the host cell requires the concerted rupture of its enveloping membranes. Hence, we investigated the role of the plasmodial perforin-like protein PPLP2 in the egress of Plasmodium falciparum from erythrocytes. PPLP2 is expressed in blood stage schizonts and mature gametocytes. The protein localizes in vesicular structures, which in activated gametocytes discharge PPLP2 in a calcium-dependent manner. PPLP2 comprises a MACPF domain and recombinant PPLP2 has haemolytic activities towards erythrocytes. PPLP2-deficient [PPLP2(−)] merozoites show normal egress dynamics during the erythrocytic replication cycle, but activated PPLP2(−) gametocytes were unable to leave erythrocytes and stayed trapped within these cells. While the parasitophorous vacuole membrane ruptured normally, the activated PPLP2(−) gametocytes were unable to permeabilize the erythrocyte membrane and to release the erythrocyte cytoplasm. In consequence, transmission of PPLP2(−) parasites to the Anopheles vector was reduced. Pore-forming equinatoxin II rescued both PPLP2(−) gametocyte exflagellation and parasite transmission. The pore sealant Tetronic 90R4, on the other hand, caused trapping of activated wild-type gametocytes within the enveloping erythrocytes, thus mimicking the PPLP2(−) loss-of-function phenotype. We propose that the haemolytic activity of PPLP2 is essential for gametocyte egress due to permeabilization of the erythrocyte membrane and depletion of the erythrocyte cytoplasm. Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120895 VL - 16 IS - 5 ER - TY - JOUR A1 - Feller, Tatjana A1 - Thom, Pascal A1 - Koch, Natalie A1 - Spiegel, Holger A1 - Addai-Mensah, Otchere A1 - Fischer, Rainer A1 - Reimann, Andreas A1 - Pradel, Gabriele A1 - Fendel, Rolf A1 - Schillberg, Stefan A1 - Scheuermayer, Matthias A1 - Schinkel, Helga T1 - Plant-Based Production of Recombinant Plasmodium Surface Protein Pf38 and Evaluation of its Potential as a Vaccine Candidate JF - PLOS ONE N2 - Pf38 is a surface protein of the malarial parasite Plasmodium falciparum. In this study, we produced and purified recombinant Pf38 and a fusion protein composed of red fluorescent protein and Pf38 (RFP-Pf38) using a transient expression system in the plant Nicotiana benthamiana. To our knowledge, this is the first description of the production of recombinant Pf38. To verify the quality of the recombinant Pf38, plasma from semi-immune African donors was used to confirm specific binding to Pf38. ELISA measurements revealed that immune responses to Pf38 in this African subset were comparable to reactivities to AMA-1 and \(MSP1_{19}\). Pf38 and RFP-Pf38 were successfully used to immunise mice, although titres from these mice were low (on average 1:11.000 and 1:39.000, respectively). In immune fluorescence assays, the purified IgG fraction from the sera of immunised mice recognised Pf38 on the surface of schizonts, gametocytes, macrogametes and zygotes, but not sporozoites. Growth inhibition assays using \(\alpha Pf38\) antibodies demonstrated strong inhibition \((\geq 60 \% ) \) of the growth of blood-stage P. falciparum. The development of zygotes was also effectively inhibited by \(\alpha Pf38\) antibodies, as determined by the zygote development assay. Collectively, these results suggest that Pf38 is an interesting candidate for the development of a malaria vaccine. KW - malaria vaccine KW - balancing selection KW - N-glycans KW - falciparum KW - expression KW - antibodies KW - identification KW - transmission KW - tobacco KW - antigen Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128221 SN - 1932-6203 VL - 8 IS - 11 ER - TY - JOUR A1 - von Bohl, Andreas A1 - Kuehn, Andrea A1 - Simon, Nina A1 - Nkwouano Ngongang, Vanesa A1 - Spehr, Marc A1 - Baumeister, Stefan A1 - Przyborski, Jude M. A1 - Fischer, Rainer A1 - Pradel, Gabriele T1 - A WD40-repeat protein unique to malaria parasites associates with adhesion protein complexes and is crucial for blood stage progeny JF - Malaria Journal N2 - Background During development in human erythrocytes, Plasmodium falciparum parasites display a remarkable number of adhesive proteins on their plasma membrane. In the invasive merozoites, these include members of the PfMSP1 and PfAMA1/RON complexes, which facilitate contact between merozoites and red blood cells. In gametocytes, sexual precursor cells mediating parasite transmission to the mosquito vector, plasma membrane-associated proteins primarily belong to the PfCCp and 6-cys families with roles in fertilization. This study describes a newly identified WD40-repeat protein unique to Plasmodium species that associates with adhesion protein complexes of both merozoites and gametocytes. Methods The WD40-repeat protein-like protein PfWLP1 was identified via co-immunoprecipitation assays followed by mass spectrometry and characterized using biochemical and immunohistochemistry methods. Reverse genetics were employed for functional analysis. Results PfWLP1 is expressed both in schizonts and gametocytes. In mature schizonts, the protein localizes underneath the merozoite micronemes and interacts with PfAMA1, while in gametocytes PfWLP1 primarily accumulates underneath the plasma membrane and associates with PfCCp1 and Pfs230. Reverse genetics failed to disrupt the pfwlp1 gene, while haemagglutinin-tagging was feasible, suggesting a crucial function for PfWLP1 during blood stage replication. Conclusions This is the first report on a plasmodial WD40-repeat protein associating with cell adhesion proteins. Since WD40 domains are known to mediate protein–protein contact by serving as a rigid scaffold for protein interactions, the presented data suggest that PfWLP1 supports the stability of adhesion protein complexes of the plasmodial blood stages. KW - PfCCp protein KW - Pfs230 KW - PfAMA1 KW - WD40 KW - gametocyte KW - microneme KW - merozoite KW - plasmodium falciparum KW - malaria Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139728 VL - 14 IS - 435 ER - TY - JOUR A1 - Beiss, Veronique A1 - Spiegel, Holger A1 - Boes, Alexander A1 - Scheuermayer, Matthias A1 - Reimann, Andreas A1 - Schillberg, Stefan A1 - Fischer, Rainer T1 - Plant expression and characterization of the transmission-blocking vaccine candidate PfGAP50 JF - BMC Biotechnology N2 - Background: Despite the limited success after decades of intensive research and development efforts, vaccination still represents the most promising strategy to significantly reduce the disease burden in malaria endemic regions. Besides the ultimate goal of inducing sterile protection in vaccinated individuals, the prevention of transmission by so-called transmission blocking vaccines (TBVs) is being regarded as an important feature of an efficient malaria eradication strategy. Recently, Plasmodium falciparum GAP50 (PfGAP50), a 44.6 kDa transmembrane protein that forms an essential part of the invasion machinery (glideosome) multi-protein complex, has been proposed as novel potential transmission-blocking candidate. Plant-based expression systems combine the advantages of eukaryotic expression with a up-scaling potential and a good product safety profile suitable for vaccine production. In this study we investigated the feasibility to use the transient plant expression to produce PfGAP50 suitable for the induction of parasite specific inhibitory antibodies. Results: We performed the transient expression of recombinant PfGAP50 in Nicotiana benthamiana leaves using endoplasmatic reticulum (ER) and plastid targeting. After IMAC-purification the protein yield and integrity was investigated by SDS-PAGE and Western Blot. Rabbit immune IgG derived by the immunization with the plastidtargeted variant of PfGAP50 was analyzed by immune fluorescence assay (IFA) and zygote inhibition assay (ZIA). PfGAP50 could be produced in both subcellular compartments at different yields IMAC (Immobilized Metal Affinity Chromatography) purification from extract yielded up to 4.1 mu g/g recombinant protein per fresh leaf material for ER-retarded and 16.2 mu g/g recombinant protein per fresh leave material for plasmid targeted PfGAP50, respectively. IgG from rabbit sera generated by immunization with the recombinant protein specifically recognized different parasite stages in immunofluorescence assay. Furthermore up to 55 % inhibition in an in vitro zygote inhibition assay could be achieved using PfGAP50-specific rabbit immune IgG. Conclusions: The results of this study demonstrate that the plant-produced PfGAP50 is functional regarding the presentation of inhibitory epitopes and could be considered as component of a transmission-blocking malaria vaccine formulation. KW - PFS25 KW - plastid targeting KW - plant-made vaccines KW - agroinfiltration KW - gametes KW - sexual stage KW - plasmodium falciparum KW - membrane KW - antibodies KW - immunization KW - RTS,S/AS01 malaria vaccine KW - recombinant proteins KW - cost-effectiveness KW - purification Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137327 VL - 15 IS - 108 ER - TY - JOUR A1 - Kern, Selina A1 - Agarwal, Shruti A1 - Huber, Kilian A1 - Gehring, Andre P. A1 - Strödke, Benjamin A1 - Wirth, Christine C. A1 - Brügl, Thomas A1 - Abodo, Liane Onambele A1 - Dandekar, Thomas A1 - Doerig, Christian A1 - Fischer, Rainer A1 - Tobin, Andrew B. A1 - Alam, Mahmood M. A1 - Bracher, Franz A1 - Pradel, Gabriele T1 - Inhibition of the SR Protein-Phosphorylating CLK Kinases of Plasmodium falciparum Impairs Blood Stage Replication and Malaria Transmission JF - PLOS ONE N2 - Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-beta-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs. KW - parasite KW - expression KW - mosquito KW - splicing factors KW - lactate dehydrogenase KW - xanthurenic acid KW - in-vitro KW - RNA-SEQ KW - identification KW - culture Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115405 SN - 1932-6203 VL - 9 IS - 9 ER - TY - JOUR A1 - Boes, Alexander A1 - Spiegel, Holger A1 - Voepel, Nadja A1 - Edgue, Gueven A1 - Beiss, Veronique A1 - Kapelski, Stephanie A1 - Fendel, Rolf A1 - Scheuermayer, Matthias A1 - Pradel, Gabriele A1 - Bolscher, Judith M. A1 - Behet, Marije C. A1 - Dechering, Koen J. A1 - Hermsen, Cornelus C. A1 - Sauerwein, Robert W. A1 - Schillberg, Stefan A1 - Reimann, Andreas A1 - Fischer, Rainer T1 - Analysis of a multi-component multi-stage malaria vaccine candidate—tackling the cocktail challenge JF - PLoS ONE N2 - Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total) from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80%), blood (up to 90%) and sexual parasite stages (100%). Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17–25 μg/ml), the blood stage (40–60 μg/ml) and the sexual stage (1.75 μg/ml). While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy. KW - malaria KW - vaccines KW - antibodies KW - P. falciparum Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173092 VL - 10 IS - 7 ER -