TY - JOUR A1 - Toussaint, André A1 - Richter, Anne A1 - Mantel, Frederick A1 - Flickinger, John C. A1 - Grills, Inga Siiner A1 - Tyagi, Neelam A1 - Sahgal, Arjun A1 - Letourneau, Daniel A1 - Sheehan, Jason P. A1 - Schlesinger, David J. A1 - Gerszten, Peter Carlos A1 - Guckenberger, Matthias T1 - Variability in spine radiosurgery treatment planning – results of an international multi-institutional study JF - Radiation Oncology N2 - Background The aim of this study was to quantify the variability in spinal radiosurgery (SRS) planning practices between five international institutions, all member of the Elekta Spine Radiosurgery Research Consortium. Methods Four institutions provided one representative patient case each consisting of the medical history, CT and MR imaging. A step-wise planning approach was used where, after each planning step a consensus was generated that formed the basis for the next planning step. This allowed independent analysis of all planning steps of CT-MR image registration, GTV definition, CTV definition, PTV definition and SRS treatment planning. In addition, each institution generated one additional SRS plan for each case based on intra-institutional image registration and contouring, independent of consensus results. Results Averaged over the four cases, image registration variability ranged between translational 1.1 mm and 2.4 mm and rotational 1.1° and 2.0° in all three directions. GTV delineation variability was 1.5 mm in axial and 1.6 mm in longitudinal direction averaged for the four cases. CTV delineation variability was 0.8 mm in axial and 1.2 mm in longitudinal direction. CTV-to-PTV margins ranged between 0 mm and 2 mm according to institutional protocol. Delineation variability was 1 mm in axial directions for the spinal cord. Average PTV coverage for a single fraction18 Gy prescription was 87 ± 5 %; Dmin to the PTV was 7.5 ± 1.8 Gy averaged over all cases and institutions. Average Dmax to the PRV_SC (spinal cord + 1 mm) was 10.5 ± 1.6 Gy and the average Paddick conformity index was 0.69 ± 0.06. Conclusions Results of this study reflect the variability in current practice of spine radiosurgery in large and highly experienced academic centers. Despite close methodical agreement in the daily workflow, clinically significant variability in all steps of the treatment planning process was demonstrated. This may translate into differences in patient clinical outcome and highlights the need for consensus and established delineation and planning criteria. KW - planning variability KW - spine radiosurgery KW - vertebral metastases KW - delineation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146687 VL - 11 IS - 57 ER - TY - JOUR A1 - Guckenberger, Matthias A1 - Sweeney, Reinhart A. A1 - Flickinger, John C. A1 - Gerszten, Peter C. A1 - Kersh, Ronald A1 - Sheehan, Jason A1 - Sahgal, Arjun T1 - Clinical practice of image-guided spine radiosurgery - results from an international research consortium JF - Radiation Oncology N2 - Background Spinal radiosurgery is a quickly evolving technique in the radiotherapy and neurosurgical communities. However, the methods of spine radiosurgery have not been standardized. This article describes the results of a survey about the methods of spine radiosurgery at five international institutions. Methods All institutions are members of the Elekta Spine Radiosurgery Research Consortium and have a dedicated research and clinical focus on image-guided radiosurgery. The questionnaire consisted of 75 items covering all major steps of spine radiosurgery. Results Strong agreement in the methods of spine radiosurgery was observed. In particular, similarities were observed with safety and quality assurance playing an important role in the methods of all institutions, cooperation between neurosurgeons and radiation oncologists in case selection, dedicated imaging for target- and organ-at-risk delineation, application of proper safety margins for the target volume and organs-at-risk, conformal planning and precise image-guided treatment delivery, and close clinical and radiological follow-up. In contrast, three major areas of uncertainty and disagreement were identified: 1) Indications and contra-indications for spine radiosurgery; 2) treatment dose and fractionation and 3) tolerance dose of the spinal cord. Conclusions Results of this study reflect the current practice of spine radiosurgery in large academic centers. Despite close agreement was observed in many steps of spine radiosurgery, further research in form of retrospective and especially prospective studies is required to refine the details of spinal radiosurgery in terms of safety and efficacy. KW - vertebral metastases KW - spine radiosurgery KW - methods KW - questionnaire Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138006 VL - 6 IS - 172 ER - TY - JOUR A1 - Guckenberger, Matthias A1 - Mantel, Frederick A1 - Gerszten, Peter C. A1 - Flickinger, John C. A1 - Sahgal, Arjun A1 - Létourneau, Daniel A1 - Grills, Inga S. A1 - Jawad, Maha A1 - Fahim, Daniel K. A1 - Shin, John H. A1 - Winey, Brian A1 - Sheehan, Jason A1 - Kersh, Ron T1 - Safety and efficacy of stereotactic body radiotherapy as primary treatment for vertebral metastases: a multi-institutional analysis N2 - Purpose To evaluate patient selection criteria, methodology, safety and clinical outcomes of stereotactic body radiotherapy (SBRT) for treatment of vertebral metastases. Materials and methods Eight centers from the United States (n = 5), Canada (n = 2) and Germany (n = 1) participated in the retrospective study and analyzed 301 patients with 387 vertebral metastases. No patient had been exposed to prior radiation at the treatment site. All patients were treated with linac-based SBRT using cone-beam CT image-guidance and online correction of set-up errors in six degrees of freedom. Results 387 spinal metastases were treated and the median follow-up was 11.8 months. The median number of consecutive vertebrae treated in a single volume was one (range, 1-6), and the median total dose was 24 Gy (range 8-60 Gy) in 3 fractions (range 1-20). The median EQD210 was 38 Gy (range 12-81 Gy). Median overall survival (OS) was 19.5 months and local tumor control (LC) at two years was 83.9%. On multivariate analysis for OS, male sex (p < 0.001; HR = 0.44), performance status <90 (p < 0.001; HR = 0.46), presence of visceral metastases (p = 0.007; HR = 0.50), uncontrolled systemic disease (p = 0.007; HR = 0.45), >1 vertebra treated with SBRT (p = 0.04; HR = 0.62) were correlated with worse outcomes. For LC, an interval between primary diagnosis of cancer and SBRT of ≤30 months (p = 0.01; HR = 0.27) and histology of primary disease (NSCLC, renal cell cancer, melanoma, other) (p = 0.01; HR = 0.21) were correlated with worse LC. Vertebral compression fractures progressed and developed de novo in 4.1% and 3.6%, respectively. Other adverse events were rare and no radiation induced myelopathy reported. Conclusions This multi-institutional cohort study reports high rates of efficacy with spine SBRT. At this time the optimal fractionation within high dose practice is unknown. KW - Medizin Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110638 ER - TY - JOUR A1 - Gerszten, Peter C. A1 - Sahgal, Arjun A1 - Sheehan, Jason P. A1 - Kersh, Ronald A1 - Chen, Stephanie A1 - Flickinger, John C. A1 - Quader, Mubina A1 - Fahim, Daniel A1 - Grills, Inga A1 - Shin, John H. A1 - Winey, Brian A1 - Oh, Kevin A1 - Sweeney, Reinhart A. A1 - Guckenberger, Matthias T1 - A multi-national report on methods for institutional credentialing for spine radiosurgery JF - Radiation Oncology N2 - Background: Stereotactic body radiotherapy and radiosurgery are rapidly emerging treatment options for both malignant and benign spine tumors. Proper institutional credentialing by physicians and medical physicists as well as other personnel is important for the safe and effective adoption of spine radiosurgery. This article describes the methods for institutional credentialing for spine radiosurgery at seven highly experienced international institutions. Methods: All institutions (n = 7) are members of the Elekta Spine Radiosurgery Research Consortium and have a dedicated research and clinical focus on image-guided spine radiosurgery. A questionnaire consisting of 24 items covering various aspects of institutional credentialing for spine radiosurgery was completed by all seven institutions. Results: Close agreement was observed in most aspects of spine radiosurgery credentialing at each institution. A formal credentialing process was believed to be important for the implementation of a new spine radiosurgery program, for patient safety and clinical outcomes. One institution has a written policy specific for spine radiosurgery credentialing, but all have an undocumented credentialing system in place. All institutions rely upon an in-house proctoring system for the training of both physicians and medical physicists. Four institutions require physicians and medical physicists to attend corporate sponsored training. Two of these 4 institutions also require attendance at a non-corporate sponsored academic society radiosurgery course. Corporate as well as non-corporate sponsored training were believed to be complimentary and both important for training. In 5 centers, all cases must be reviewed at a multidisciplinary conference prior to radiosurgery treatment. At 3 centers, neurosurgeons are not required to be involved in all cases if there is no evidence for instability or spinal cord compression. Backup physicians and physicists are required at only 1 institution, but all institutions have more than one specialist trained to perform spine radiosurgery. All centers believed that credentialing should also be device specific, and all believed that professional societies should formulate guidelines for institutions on the requirements for spine radiosurgery credentialing. Finally, in 4 institutions radiation therapists were required to attend corporate-sponsored device specific training for credentialing, and in only 1 institution were radiation therapists required to also attend academic society training for credentialing. Conclusions: This study represents the first multi-national report of the current practice of institutional credentialing for spine radiosurgery. Key methodologies for safe implementation and credentialing of spine radiosurgery have been identified. There is strong agreement among experienced centers that credentialing is an important component of the safe and effective implementation of a spine radiosurgery program. KW - cyberknife radiosurgery KW - advanced technology KW - conformal radiotherapy KW - clinical trials KW - quality assurance KW - credentialing KW - spine tumors KW - stereotactic body radiotherapy KW - spine Radiosurgery KW - paraspinal tumors KW - intensity modulated radiotherapy KW - ACR practice guidelines KW - radiation therapy Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131485 VL - 8 IS - 158 ER -