TY - JOUR A1 - Hoffmann, Linda S. A1 - Etzrodt, Jennifer A1 - Willkomm, Lena A1 - Sanyal, Abhishek A1 - Scheja, Ludger A1 - Fischer, Alexander W. C. A1 - Stasch, Johannes-Peter A1 - Bloch, Wilhelm A1 - Friebe, Andreas A1 - Heeren, Joerg A1 - Pfeifer, Alexander T1 - Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue JF - Nature Communications N2 - Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41-8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing \(\beta\)\(_{1}\)-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces 'browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities. KW - decompensated heart failure KW - mitochondrial biogenesis KW - pulmonary hypertension KW - nitric oxide KW - erectile dysfunction KW - beige adipocytes KW - fat development KW - cGMP KW - riociguat KW - white Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143127 VL - 6 IS - 7235 ER - TY - JOUR A1 - Gambaryan, Stepan A1 - Subramanian, Hariharan A1 - Kehrer, Linda A1 - Mindukshev, Igor A1 - Sudnitsyna, Julia A1 - Reiss, Cora A1 - Rukoyatkina, Natalia A1 - Friebe, Andreas A1 - Sharina, Iraida A1 - Martin, Emil A1 - Walter, Ulrich T1 - Erythrocytes do not activate purified and platelet soluble guanylate cyclases even in conditions favourable for NO synthesis JF - Cell Communication and Signaling N2 - Background Direct interaction between Red blood cells (RBCs) and platelets is known for a long time. The bleeding time is prolonged in anemic patients independent of their platelet count and could be corrected by transfusion of RBCs, which indicates that RBCs play an important role in hemostasis and platelet activation. However, in the last few years, opposing mechanisms of platelet inhibition by RBCs derived nitric oxide (NO) were proposed. The aim of our study was to identify whether RBCs could produce NO and activate soluble guanylate cyclase (sGC) in platelets. Methods To test whether RBCs could activate sGC under different conditions (whole blood, under hypoxia, or even loaded with NO), we used our well-established and highly sensitive models of NO-dependent sGC activation in platelets and activation of purified sGC. The activation of sGC was monitored by detecting the phosphorylation of Vasodilator Stimulated Phosphoprotein (VASPS239) by flow cytometry and Western blot. ANOVA followed by Bonferroni’s test and Student’s t-test were used as appropriate. Results We show that in the whole blood, RBCs prevent NO-mediated inhibition of ADP and TRAP6-induced platelet activation. Likewise, coincubation of RBCs with platelets results in strong inhibition of NO-induced sGC activation. Under hypoxic conditions, incubation of RBCs with NO donor leads to Hb-NO formation which inhibits sGC activation in platelets. Similarly, RBCs inhibit activation of purified sGC, even under conditions optimal for RBC-mediated generation of NO from nitrite. Conclusions All our experiments demonstrate that RBCs act as strong NO scavengers and prevent NO-mediated inhibition of activated platelets. In all tested conditions, RBCs were not able to activate platelet or purified sGC. KW - hemoglobin KW - erythrocytes KW - nitric oxide KW - soluble guanylate cyclase KW - platelets Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161223 VL - 14 IS - 16 ER - TY - JOUR A1 - Korkmaz, Yüksel A1 - Puladi, Behrus A1 - Galler, Kerstin A1 - Kämmerer, Peer W. A1 - Schröder, Agnes A1 - Gölz, Lina A1 - Sparwasser, Tim A1 - Bloch, Wilhelm A1 - Friebe, Andreas A1 - Deschner, James T1 - Inflammation in the human periodontium induces downregulation of the α\(_1\)- and β\(_1\)-subunits of the sGC in cementoclasts JF - International Journal of Molecular Sciences N2 - Nitric oxide (NO) binds to soluble guanylyl cyclase (sGC), activates it in a reduced oxidized heme iron state, and generates cyclic Guanosine Monophosphate (cGMP), which results in vasodilatation and inhibition of osteoclast activity. In inflammation, sGC is oxidized and becomes insensitive to NO. NO- and heme-independent activation of sGC requires protein expression of the α\(_1\)- and β\(_1\)-subunits. Inflammation of the periodontium induces the resorption of cementum by cementoclasts and the resorption of the alveolar bone by osteoclasts, which can lead to tooth loss. As the presence of sGC in cementoclasts is unknown, we investigated the α\(_1\)- and β\(_1\)-subunits of sGC in cementoclasts of healthy and inflamed human periodontium using double immunostaining for CD68 and cathepsin K and compared the findings with those of osteoclasts from the same sections. In comparison to cementoclasts in the healthy periodontium, cementoclasts under inflammatory conditions showed a decreased staining intensity for both α\(_1\)- and β\(_1\)-subunits of sGC, indicating reduced protein expression of these subunits. Therefore, pharmacological activation of sGC in inflamed periodontal tissues in an NO- and heme-independent manner could be considered as a new treatment strategy to inhibit cementum resorption. KW - nitric oxide KW - soluble guanylyl cyclase KW - cGMP KW - cementoclasts KW - cementum KW - osteoclasts KW - alveolar bone KW - periodontitis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285783 SN - 1422-0067 VL - 22 IS - 2 ER -