TY - JOUR A1 - Sturm, Julia B. A1 - Hess, Michael A1 - Weibel, Stephanie A1 - Chen, Nanhei G. A1 - Yu, Yong A. A1 - Zhang, Quian A1 - Donat, Ulrike A1 - Reiss, Cora A1 - Gambaryan, Stepan A1 - Krohne, Georg A1 - Stritzker, Jochen A1 - Szalay, Aladar A. T1 - Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy N2 - Background: Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. Methods: Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. Results: We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. Conclusion: Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects. KW - Biologie KW - vaccinia virus KW - cancer KW - cytokine KW - hyper-IL-6 KW - oncolysis KW - chemotherapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75224 ER - TY - JOUR A1 - Gambaryan, Stepan A1 - Subramanian, Hariharan A1 - Kehrer, Linda A1 - Mindukshev, Igor A1 - Sudnitsyna, Julia A1 - Reiss, Cora A1 - Rukoyatkina, Natalia A1 - Friebe, Andreas A1 - Sharina, Iraida A1 - Martin, Emil A1 - Walter, Ulrich T1 - Erythrocytes do not activate purified and platelet soluble guanylate cyclases even in conditions favourable for NO synthesis JF - Cell Communication and Signaling N2 - Background Direct interaction between Red blood cells (RBCs) and platelets is known for a long time. The bleeding time is prolonged in anemic patients independent of their platelet count and could be corrected by transfusion of RBCs, which indicates that RBCs play an important role in hemostasis and platelet activation. However, in the last few years, opposing mechanisms of platelet inhibition by RBCs derived nitric oxide (NO) were proposed. The aim of our study was to identify whether RBCs could produce NO and activate soluble guanylate cyclase (sGC) in platelets. Methods To test whether RBCs could activate sGC under different conditions (whole blood, under hypoxia, or even loaded with NO), we used our well-established and highly sensitive models of NO-dependent sGC activation in platelets and activation of purified sGC. The activation of sGC was monitored by detecting the phosphorylation of Vasodilator Stimulated Phosphoprotein (VASPS239) by flow cytometry and Western blot. ANOVA followed by Bonferroni’s test and Student’s t-test were used as appropriate. Results We show that in the whole blood, RBCs prevent NO-mediated inhibition of ADP and TRAP6-induced platelet activation. Likewise, coincubation of RBCs with platelets results in strong inhibition of NO-induced sGC activation. Under hypoxic conditions, incubation of RBCs with NO donor leads to Hb-NO formation which inhibits sGC activation in platelets. Similarly, RBCs inhibit activation of purified sGC, even under conditions optimal for RBC-mediated generation of NO from nitrite. Conclusions All our experiments demonstrate that RBCs act as strong NO scavengers and prevent NO-mediated inhibition of activated platelets. In all tested conditions, RBCs were not able to activate platelet or purified sGC. KW - hemoglobin KW - erythrocytes KW - nitric oxide KW - soluble guanylate cyclase KW - platelets Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161223 VL - 14 IS - 16 ER -