TY - JOUR A1 - Beck, Christine A1 - Morbach, Henner A1 - Beer, Meinrad A1 - Stenzel, Martin A1 - Tappe, Dennis A1 - Gattenlöhner, Stefan A1 - Hofmann, Ulrich A1 - Raab, Peter A1 - Girschick, Hermann J. T1 - Chronic nonbacterial osteomyelitis in childhood: prospective follow-up during the first year of anti-inflammatory treatment N2 - Introduction: Chronic nonbacterial osteomyelitis (CNO) is an inflammatory disorder of unknown etiology. In children and adolescents CNO predominantly affects the metaphyses of the long bones, but lesions can occur at any site of the skeleton. Prospectively followed cohorts using a standardized protocol in diagnosis and treatment have rarely been reported. Methods: Thirty-seven children diagnosed with CNO were treated with naproxen continuously for the first 6 months. If assessment at that time revealed progressive disease or no further improvement, sulfasalazine and short-term corticosteroids were added. The aims of our short-term follow-up study were to describe treatment response in detail and to identify potential risk factors for an unfavorable outcome. Results: Naproxen treatment was highly effective in general, inducing a symptom-free status in 43% of our patients after 6 months. However, four nonsteroidal anti-inflammatory drug (NSAID) partial-responders were additionally treated with sulfasalazine and short-term corticosteroids. The total number of clinical detectable lesions was significantly reduced. Mean disease activity estimated by the patient/physician and the physical aspect of health-related quality of life including functional ability (global assessment/childhood health assessment questionnaire and childhood health assessment questionnaire) and pain improved significantly. Forty-one percent of our patients showed radiological relapses, but 67% of them were clinically silent. Conclusions: Most children show a favorable clinical course in the first year of anti-inflammatory treatment with NSAIDs. Relapses and new radiological lesions can occur at any time and at any site in the skeleton but may not be clinically symptomatic. Whole-body magnetic resonance imaging proved to be very sensitive for initial and follow-up diagnostics. KW - Mikrobiologie Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67792 ER - TY - JOUR A1 - Dirks, Johannes A1 - Fischer, Jonas A1 - Haase, Gabriele A1 - Holl-Wieden, Annette A1 - Hofmann, Christine A1 - Girschick, Hermann A1 - Morbach, Henner T1 - CD21\(^{lo/−}\)CD27\(^−\)IgM\(^−\) Double-Negative B Cells Accumulate in the Joints of Patients With Antinuclear Antibody-Positive Juvenile Idiopathic Arthritis JF - Frontiers in Pediatrics N2 - Juvenile idiopathic arthritis (JIA) encompasses a heterogeneous group of diseases. The appearance of antinuclear antibodies (ANAs) in almost half of the patients suggests B cell dysregulation as a distinct pathomechanism in these patients. Additionally, ANAs were considered potential biomarkers encompassing a clinically homogenous subgroup of JIA patients. However, in ANA+ JIA patients, the site of dysregulated B cell activation as well as the B cell subsets involved in this process is still unknown. Hence, in this cross-sectional study, we aimed in an explorative approach at characterizing potential divergences in B cell differentiation in ANA+ JIA patients by assessing the distribution of peripheral blood (PB) and synovial fluid (SF) B cell subpopulations using flow cytometry. The frequency of transitional as well as switched-memory B cells was higher in PB of JIA patients than in healthy controls. There were no differences in the distribution of B cell subsets between ANA- and ANA+ patients in PB. However, the composition of SF B cells was different between ANA- and ANA+ patients with increased frequencies of CD21\(^{lo/−}\)CD27\(^−\)IgM\(^−\) “double negative” (DN) B cells in the latter. DN B cells might be a characteristic subset expanding in the joints of ANA+ JIA patients and are potentially involved in the antinuclear immune response in these patients. The results of our explorative study might foster further research dissecting the pathogenesis of ANA+ JIA patients. KW - juvenile idiopathic arthritis KW - B cells KW - antinuclear antibodies KW - synovial fluid KW - double negative B cells Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236286 SN - 2296-2360 VL - 9 ER - TY - JOUR A1 - Dirks, Johannes A1 - Haase, Gabriele A1 - Cantaert, Tineke A1 - Frey, Lea A1 - Klaas, Moritz A1 - Rickert, Christian H. A1 - Girschick, Hermann A1 - Meffre, Eric A1 - Morbach, Henner T1 - A novel AICDA splice-site mutation in two siblings with HIGM2 permits somatic hypermutation but abrogates mutational targeting JF - Journal of Clinical Immunology N2 - Hyper-IgM syndrome type 2 (HIGM2) is a B cell intrinsic primary immunodeficiency caused by mutations in AICDA encoding activation-induced cytidine deaminase (AID) which impair immunoglobulin class switch recombination (CSR) and somatic hypermutation (SHM). Whereas autosomal-recessive AID-deficiency (AR-AID) affects both CSR and SHM, the autosomal-dominant form (AD-AID) due to C-terminal heterozygous variants completely abolishes CSR but only partially affects SHM. AR-AID patients display enhanced germinal center (GC) reactions and autoimmune manifestations, which are not present in AD-AID, suggesting that SHM but not CSR regulates GC reactions and peripheral B cell tolerance. Herein, we describe two siblings with HIGM2 due to a novel homozygous AICDA mutation (c.428-1G > T) which disrupts the splice acceptor site of exon 4 and results in the sole expression of a truncated AID variant that lacks 10 highly conserved amino acids encoded by exon 4 (AID-ΔE4a). AID-ΔE4a patients suffered from defective CSR and enhanced GC reactions and were therefore indistinguishable from other AR-AID patients. However, the AID-ΔE4a variant only partially affected SHM as observed in AD-AID patients. In addition, AID-ΔE4a but not AD-AID patients revealed impaired targeting of mutational hotspot motives and distorted mutational patterns. Hence, qualitative defects in AID function and altered SHM rather than global decreased SHM activity may account for the disease phenotype in these patients. KW - hyper-IgM syndrome type 2 (HIGM2) KW - AICDA KW - AID-ΔE4a KW - AD-AID KW - mutational targeting KW - somatic hypermutation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324253 VL - 42 IS - 4 ER - TY - JOUR A1 - Eberhardt, Christiane S. A1 - Haas, Johannes-Peter A1 - Girschick, Hermann A1 - Schwarz, Tobias A1 - Morbach, Henner A1 - Rösen-Wolff, Angela A1 - Foell, Dirk A1 - Dannecker, Guenther A1 - Schepp, Carsten A1 - Ganser, Gerd A1 - Honke, Nora A1 - Eggermann, Thomas A1 - Müller-Berghaus, Jan A1 - Wagner, Norbert A1 - Ohl, Kim A1 - Tenbrock, Klaus T1 - No association of IL-12p40 pro1.1 polymorphism with juvenile idiopathic arthritis JF - Pediatric Rheumatology N2 - Background: IL-12p40 plays an important role in the activation of the T-cell lines like Th17 and Th1-cells. Theses cells are crucial in the pathogenesis of juvenile idiopathic arthritis. A polymorphism in its promoter region and the genotype IL12p40 pro1.1 leads to a higher production of IL-12p40. We studied whether there is a difference in the distribution of the genotype in patients with JIA and the healthy population. Methods: In 883 patients and 321 healthy controls the IL-12p40 promoter genotype was identified by ARMS-PCR. Results: There is no association of IL-12p40 pro polymorphism neither in patients with JIA compared to controls nor in subtypes of JIA compared to oligoarthritis. We found a non-significant tendency of a higher prevalence of the genotype pro1.1 in systemic arthritis (32.4 %) and in rheumatoid factor negative polyarthritis (30.5 %) and a lower pro1.1 genotype in persistent oligoarthritis (20.7 %) and in enthesitis-related arthritis (17 %). Likelihood of the occurrence of genotype IL12-p40 pro1.1 in patients with systemic arthritis (OR 1.722, CI 95 % 1.344-2.615, p 0.0129) and RF-negative polyarthritis (OR 1.576, CI 95 % 1.046-2.376, p 0.0367) compared to persistent oligoarthritis was significantly higher. This was also true for comparison of their homozygous genotypes IL-12p40 pro 1.1 and 2.2 in systemic arthritis (OR 1.779, CI 95 % 1.045-3.029, p 0.0338). However, in Bonferroni correction for multiple hypothesis this was not significant. Conclusion: A tendency of a higher prevalence of the genotype IL-12p40 pro1.1 in systemic arthritis and in rheumatoid factor negative polyarthritis was observed but not significant. Further investigations should be done to clarify the role IL-12p40 in the different subtypes of JIA. KW - polymorphism KW - cytokine KW - children KW - serum KW - IL12B KW - gene KW - cells KW - juvenile idiopathic arthritis KW - IL-12p40 KW - IL-12B KW - promoter Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136281 VL - 13 IS - 61 ER - TY - JOUR A1 - Fischer, Jonas A1 - Dirks, Johannes A1 - Klaussner, Julia A1 - Haase, Gabriele A1 - Holl-Wieden, Annette A1 - Hofmann, Christine A1 - Hackenberg, Stephan A1 - Girschick, Hermann A1 - Morbach, Henner T1 - Effect of clonally expanded PD-1\(^h\)\(^i\)\(^g\)\(^h\) CXCR5-CD4+ peripheral T Helper cells on B cell differentiation in the joints of patients with antinuclear antibody-positive juvenile idiopathic arthritis JF - Arthritis & Rheumatology N2 - Objective Antinuclear antibody (ANA)–positive juvenile idiopathic arthritis (JIA) is characterized by synovial B cell hyperactivity, but the precise role of CD4+ T cells in promoting local B cell activation is unknown. This study was undertaken to determine the phenotype and function of synovial CD4+ T cells that promote aberrant B cell activation in JIA. Methods Flow cytometry was performed to compare the phenotype and cytokine patterns of PD-1\(^h\)\(^i\)\(^g\)\(^h\)CD4+ T cells in the synovial fluid (SF) of patients with JIA and T follicular helper cells in the tonsils of control individuals. TCRVB next-generation sequencing was used to analyze T cell subsets for signs of clonal expansion. The functional impact of these T cell subsets on B cells was examined in cocultures in vitro. Results Multidimensional flow cytometry revealed the expansion of interleukin-21 (IL-21) and interferon-γ (IFNγ)–coexpressing PD-1\(^h\)\(^i\)\(^g\)\(^h\)CXCR5–HLA–DR+CD4+ T cells that accumulate in the joints of ANA-positive JIA patients. These T cells exhibited signs of clonal expansion with restricted T cell receptor clonotypes. The phenotype resembled peripheral T helper (Tph) cells with an extrafollicular chemokine receptor pattern and high T-bet and B lymphocyte–induced maturation protein 1 expression, but low B cell lymphoma 6 expression. SF Tph cells, by provision of IL-21 and IFNy, skewed B cell differentiation toward a CD21\(^l\)\(^o\)\(^w\)\(^/\)\(^-\)CD11c+ phenotype in vitro. Additionally, SF Tph cell frequencies correlated with the appearance of SF CD21\(^l\)\(^o\)\(^w\)\(^/\)\(^-\)CD11c+CD27–IgM– double-negative (DN) B cells in situ. KW - medicine Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256607 VL - 74 IS - 1 ER - TY - JOUR A1 - Girschick, Hermann A1 - Wolf, Christine A1 - Morbach, Henner A1 - Hertzberg, Christoph A1 - Lee-Kirsch, Min Ae T1 - Severe immune dysregulation with neurological impairment and minor bone changes in a child with spondyloenchondrodysplasia due to two novel mutations in the ACP5 gene JF - Pediatric Rheumatology N2 - Spondyloenchondrodysplasia (SPENCD) is a rare skeletal dysplasia, characterized by metaphyseal lesions, neurological impairment and immune dysregulation associated with lupus-like features. SPENCD is caused by biallelic mutations in the ACP5 gene encoding tartrate-resistant phosphatase. We report on a child, who presented with spasticity, multisystem inflammation, autoimmunity and immunodeficiency with minimal metaphyseal changes due to compound heterozygosity for two novel ACP5 mutations. These findings extend the phenotypic spectrum of SPENCD and indicate that ACP5 mutations can cause severe immune dysregulation and neurological impairment even in the absence of metaphyseal dysplasia. KW - resistant acid phosphatase KW - expression KW - systemic lupus erythematosus KW - cerebral calcification KW - deficiency KW - autoimmunity KW - dysplasia KW - trap KW - spondyloenchondrodysplasia KW - ACP5 KW - immunodeficiency KW - type I interferonopathy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149990 VL - 13 IS - 37 ER - TY - JOUR A1 - Hedrich, Christian M. A1 - Hofmann, Sigrun R. A1 - Pablik, Jessica A1 - Morbach, Henner A1 - Girschick, Hermann J. T1 - Autoinflammatory bone disorders with special focus on chronic recurrent multifocal osteomyelitis (CRMO) JF - Pediatric Rheumatology N2 - Sterile bone inflammation is the hallmark of autoinflammatory bone disorders, including chronic nonbacterial osteomyelitis (CNO) with its most severe form chronic recurrent multifocal osteomyelitis (CRMO). Autoinflammatory osteopathies are the result of a dysregulated innate immune system, resulting in immune cell infiltration of the bone and subsequent osteoclast differentiation and activation. Interestingly, autoinflammatory bone disorders are associated with inflammation of the skin and/or the intestine. In several monogenic autoinflammatory bone disorders mutations in disease-causing genes have been reported. However, regardless of recent developments, the molecular pathogenesis of CNO/CRMO remains unclear. Here, we discuss the clinical presentation and molecular pathophysiology of human autoinflammatory osteopathies and animal models with special focus on CNO/CRMO. Treatment options in monogenic autoinflammatory bone disorders and CRMO will be illustrated. KW - bisphosphonate treatment KW - IL-10 expression KW - TNF-α KW - IL-10 KW - inflammation KW - bone KW - CRMO KW - CNO KW - DIRA KW - PAPA KW - Majeed-Syndrome KW - disease KW - deficiency KW - pediatric patients KW - treatment KW - TLR4 KW - PAPA syndrome KW - hypertrophic osteodystrophy KW - chronic nonbacterial osteomyelitis KW - congenital dyserythropoietic anemia Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125694 SN - 1546-0096 VL - 11 IS - 47 ER - TY - JOUR A1 - Hedrich, Christian M. A1 - Hofmann, Sigrun R. A1 - Pablik, Jessica A1 - Morbach, Henner A1 - Girschick, Hermann J. T1 - Autoinflammatory bone disorders with special focus on chronic recurrent multifocal osteomyelitis (CRMO) JF - Pediatric Rheumatology N2 - Sterile bone inflammation is the hallmark of autoinflammatory bone disorders, including chronic nonbacterial osteomyelitis (CNO) with its most severe form chronic recurrent multifocal osteomyelitis (CRMO). Autoinflammatory osteopathies are the result of a dysregulated innate immune system, resulting in immune cell infiltration of the bone and subsequent osteoclast differentiation and activation. Interestingly, autoinflammatory bone disorders are associated with inflammation of the skin and/or the intestine. In several monogenic autoinflammatory bone disorders mutations in disease-causing genes have been reported. However, regardless of recent developments, the molecular pathogenesis of CNO/CRMO remains unclear. Here, we discuss the clinical presentation and molecular pathophysiology of human autoinflammatory osteopathies and animal models with special focus on CNO/CRMO. Treatment options in monogenic autoinflammatory bone disorders and CRMO will be illustrated. KW - TNF-α KW - PAPA KW - DIRA KW - Majeed KW - CNO KW - CRMO KW - bone KW - inflammation KW - IL-10 KW - treatment KW - TLR4 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132456 VL - 11 IS - 47 ER - TY - JOUR A1 - Hedrich, Christian M. A1 - Morbach, Henner A1 - Reiser, Christiane A1 - Girschick, Hermann J. T1 - New Insights into Adult and Paediatric Chronic Non-bacterial Osteomyelitis CNO JF - Current Rheumatology Reports N2 - Purpose of Review To describe in detail the clinical synopsis and pathophysiology of chronic non-bacterial osteomyelitis and SAPHO syndrome. Recent Findings Chronic non-bacterial osteomyelitis (CNO) has been identified as a disease entity for almost 50 years. This inflammatory bone disorder is characterized by osteolytic as well as hyperostotic/osteosclerotic lesions. It is chronic in nature, but it can present with episodic flairs and phases of remission, which have led to the denomination “chronic recurrent osteomyelitis”, with its severe multifocal form “chronic recurrent multifocal osteomyelitis” (CRMO). For almost three decades, an infectious aetiology had been considered, since especially Propionibacterium acnes had been isolated from bone lesions of individual patients. However, this concept has been challenged since long-term antibiotic therapy did not alter the course of disease and modern microbiological techniques (including PCR) failed to confirm bone infection as an underlying cause. Over recent years, a profound dysregulation of cytokine expression profiles has been demonstrated in innate immune cells of CNO patients. A hallmark of monocytes from CNO patients is the failure to produce immune regulatory cytokines interleukin-10 (IL-10) and IL-19, which have been linked with genetic and epigenetic alterations. Subsequently, a significant upregulation of pro-inflammatory, NLRP3 inflammasome-dependent cytokines (IL-1β and TNF-α), has been demonstrated. Summary The current knowledge on CNO, the underlying molecular pathophysiology, and modern imaging strategies are summarized; differential diagnoses, treatment options, outcome measures, as well as quality of life studies are discussed. KW - chronic non-bacterial osteomyelitis KW - chronic recurrent multifocal osteomyelitis KW - bone autoinflammation KW - lymphoplasmacellular osteomyelitis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232636 SN - 1523-3774 VL - 22 ER - TY - JOUR A1 - Hofmann, Sigrun Ruth A1 - Böttger, Fanny A1 - Range, Ursula A1 - Lück, Christian A1 - Morbach, Henner A1 - Girschick, Hermann Joseph A1 - Suttorp, Meinolf A1 - Hedrich, Christian Michael T1 - Serum interleukin-6 and CCL11/eotaxin may be suitable biomarkers for the diagnosis of chronic nonbacterial osteomyelitis JF - Frontiers in Pediatrics N2 - Objectives: Chronic recurrent multifocal osteomyelitis (CRMO), the most severe form of chronic nonbacterial osteomyelitis (CNO), is an autoinflammatory bone disorder. In the absence of diagnostic criteria or biomarkers, CNO/CRMO remains a diagnosis of exclusion. The aim of this study was to identify biomarkers for diagnosing multifocal disease (CRMO). Study design: Sera from 71 pediatric CRMO patients, 11 patients with osteoarticular infections, 62 patients with juvenile idiopathic arthritis (JIA), 7 patients with para-infectious or reactive arthritis, and 43 patients with acute leukemia or lymphoma, as well as 59 healthy individuals were collected. Multiplex analysis of 18 inflammation- and/or bone remodeling-associated serum proteins was performed. Statistical analysis included univariate ANOVA, discriminant analysis, univariate receiver operating characteristic (ROC) analysis, and logistic regression analyses. Results: For 14 of 18 blood serum proteins, significant differences were determined between CRMO patients, at least one alternative diagnosis, or healthy controls. Multi-component discriminant analysis delivered five biomarkers (IL-6, CCL11/eotaxin, CCL5/RANTES, collagen Iα, sIL-2R) for the diagnosis of CRMO. ROC analysis allowed further reduction to a core set of 2 biomarkers (CCL11/eotaxin, IL-6) that are sufficient to discern between CRMO, healthy controls, and alternative diagnoses. Conclusion: Serum biomarkers CCL11/eotaxin and IL-6 differentiate between patients with CRMO, healthy controls, and alternative diagnoses (leukemia and lymphoma, osteoarticular infections, para-infectious arthritis, and JIA). Easily accessible biomarkers may aid in diagnosing CRMO. Further studies testing biomarkers in larger unrelated cohorts are warranted. KW - medicine KW - chronic nonbacterial osteomyelitis KW - chronic recurrent multifocal osteomyelitis KW - inflammation KW - biomarker KW - autoinflammation KW - diagnosis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172744 VL - 5 ER -