TY - JOUR A1 - Chopra, Martin A1 - Lang, Isabell A1 - Salzmann, Steffen A1 - Pachel, Christina A1 - Kraus, Sabrina A1 - Bäuerlein, Carina A. A1 - Brede, Christian A1 - Jordán Garrote, Ana-Laura A1 - Mattenheimer, Katharina A1 - Ritz, Miriam A1 - Schwinn, Stefanie A1 - Graf, Carolin A1 - Schäfer, Viktoria A1 - Frantz, Stefan A1 - Einsele, Hermann A1 - Wajant, Harald A1 - Beilhack, Andreas T1 - Tumor Necrosis Factor Induces Tumor Promoting and Anti-Tumoral Effects on Pancreatic Cancer via TNFR1 JF - PLoS ONE N2 - Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%), TNF deficient (12.5%), and TNFR2 deficient mice (22.2%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4+ T cells and CD4+ forkhead box P3 (FoxP3)+ regulatory T cells (Treg) but reduced numbers of CD8+ T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome. KW - Bioluminescence KW - cancer treatment KW - cell staining KW - cytokines KW - immune cells KW - metastasis KW - regulatory T cells KW - T cells Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97246 ER - TY - JOUR A1 - Bäuerlein, Carina A. A1 - Qureischi, Musga A1 - Mokhtari, Zeinab A1 - Tabares, Paula A1 - Brede, Christian A1 - Jordán Garrote, Ana-Laura A1 - Riedel, Simone S. A1 - Chopra, Martin A1 - Reu, Simone A1 - Mottok, Anja A1 - Arellano-Viera, Estibaliz A1 - Graf, Carolin A1 - Kurzwart, Miriam A1 - Schmiedgen, Katharina A1 - Einsele, Hermann A1 - Wölfl, Matthias A1 - Schlegel, Paul-Gerhardt A1 - Beilhack, Andreas T1 - A T-Cell Surface Marker Panel Predicts Murine Acute Graft-Versus-Host Disease JF - Frontiers in Immunology N2 - Acute graft-versus-host disease (aGvHD) is a severe and often life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). AGvHD is mediated by alloreactive donor T-cells targeting predominantly the gastrointestinal tract, liver, and skin. Recent work in mice and patients undergoing allo-HCT showed that alloreactive T-cells can be identified by the expression of α4β7 integrin on T-cells even before manifestation of an aGvHD. Here, we investigated whether the detection of a combination of the expression of T-cell surface markers on peripheral blood (PB) CD8\(^+\) T-cells would improve the ability to predict aGvHD. To this end, we employed two independent preclinical models of minor histocompatibility antigen mismatched allo-HCT following myeloablative conditioning. Expression profiles of integrins, selectins, chemokine receptors, and activation markers of PB donor T-cells were measured with multiparameter flow cytometry at multiple time points before the onset of clinical aGvHD symptoms. In both allo-HCT models, we demonstrated a significant upregulation of α4β7 integrin, CD162E, CD162P, and conversely, a downregulation of CD62L on donor T-cells, which could be correlated with the development of aGvHD. Other surface markers, such as CD25, CD69, and CC-chemokine receptors were not found to be predictive markers. Based on these preclinical data from mouse models, we propose a surface marker panel on peripheral blood T-cells after allo-HCT combining α4β7 integrin with CD62L, CD162E, and CD162P (cutaneous lymphocyte antigens, CLA, in humans) to identify patients at risk for developing aGvHD early after allo-HCT. KW - acute graft-versus-host disease KW - alloreactive T cells KW - transplantation KW - prediction KW - mouse models Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224290 SN - 1664-3224 VL - 11 ER - TY - JOUR A1 - Vargas, Juan Gamboa A1 - Wagner, Jennifer A1 - Shaikh, Haroon A1 - Lang, Isabell A1 - Medler, Juliane A1 - Anany, Mohamed A1 - Steinfatt, Tim A1 - Mosca, Josefina Peña A1 - Haack, Stephanie A1 - Dahlhoff, Julia A1 - Büttner-Herold, Maike A1 - Graf, Carolin A1 - Viera, Estibaliz Arellano A1 - Einsele, Hermann A1 - Wajant, Harald A1 - Beilhack, Andreas T1 - A TNFR2-Specific TNF fusion protein with improved in vivo activity JF - Frontiers in Immunology N2 - Tumor necrosis factor (TNF) receptor-2 (TNFR2) has attracted considerable interest as a target for immunotherapy. Indeed, using oligomeric fusion proteins of single chain-encoded TNFR2-specific TNF mutants (scTNF80), expansion of regulatory T cells and therapeutic activity could be demonstrated in various autoinflammatory diseases, including graft-versus-host disease (GvHD), experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). With the aim to improve the in vivo availability of TNFR2-specific TNF fusion proteins, we used here the neonatal Fc receptor (FcRn)-interacting IgG1 molecule as an oligomerizing building block and generated a new TNFR2 agonist with improved serum retention and superior in vivo activity. Methods Single-chain encoded murine TNF80 trimers (sc(mu)TNF80) were fused to the C-terminus of an in mice irrelevant IgG1 molecule carrying the N297A mutation which avoids/minimizes interaction with Fcγ-receptors (FcγRs). The fusion protein obtained (irrIgG1(N297A)-sc(mu)TNF80), termed NewSTAR2 (New selective TNF-based agonist of TNF receptor 2), was analyzed with respect to activity, productivity, serum retention and in vitro and in vivo activity. STAR2 (TNC-sc(mu)TNF80 or selective TNF-based agonist of TNF receptor 2), a well-established highly active nonameric TNFR2-specific variant, served as benchmark. NewSTAR2 was assessed in various in vitro and in vivo systems. Results STAR2 (TNC-sc(mu)TNF80) and NewSTAR2 (irrIgG1(N297A)-sc(mu)TNF80) revealed comparable in vitro activity. The novel domain architecture of NewSTAR2 significantly improved serum retention compared to STAR2, which correlated with efficient binding to FcRn. A single injection of NewSTAR2 enhanced regulatory T cell (Treg) suppressive activity and increased Treg numbers by > 300% in vivo 5 days after treatment. Treg numbers remained as high as 200% for about 10 days. Furthermore, a single in vivo treatment with NewSTAR2 upregulated the adenosine-regulating ectoenzyme CD39 and other activation markers on Tregs. TNFR2-stimulated Tregs proved to be more suppressive than unstimulated Tregs, reducing conventional T cell (Tcon) proliferation and expression of activation markers in vitro. Finally, singular preemptive NewSTAR2 administration five days before allogeneic hematopoietic cell transplantation (allo-HCT) protected mice from acute GvHD. Conclusions NewSTAR2 represents a next generation ligand-based TNFR2 agonist, which is efficiently produced, exhibits improved pharmacokinetic properties and high serum retention with superior in vivo activity exerting powerful protective effects against acute GvHD. KW - agonist KW - GvHD KW - regulatory T cells KW - serum retention KW - TNF KW - TNFR2 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-277436 SN - 1664-3224 VL - 13 ER -