TY - JOUR A1 - Liaqat, Anam A1 - Sednev, Maksim V. A1 - Stiller, Carina A1 - Höbartner, Claudia T1 - RNA-Cleaving Deoxyribozymes Differentiate Methylated Cytidine Isomers in RNA JF - Angewandte Chemie International Edition N2 - Deoxyribozymes are emerging as modification-specific endonucleases for the analysis of epigenetic RNA modifications. Here, we report RNA-cleaving deoxyribozymes that differentially respond to the presence of natural methylated cytidines, 3-methylcytidine (m\(^3\)C), N\(^4\)-methylcytidine (m\(^4\)C), and 5-methylcytidine (m\(^5\)C), respectively. Using in vitro selection, we found several DNA catalysts, which are selectively activated by only one of the three cytidine isomers, and display 10- to 30-fold accelerated cleavage of their target m\(^3\)C-, m\(^4\)C- or m\(^5\)C-modified RNA. An additional deoxyribozyme is strongly inhibited by any of the three methylcytidines, but effectively cleaves unmodified RNA. The m\(^X\)C-detecting deoxyribozymes are programmable for the interrogation of natural RNAs of interest, as demonstrated for human mitochondrial tRNAs containing known m\(^3\)C and m\(^5\)C sites. The results underline the potential of synthetic functional DNA to shape highly selective active sites. KW - Deoxyribozymes KW - Epitranscriptomics KW - RNA Modification KW - Site-Specific RNA Cleavage KW - in vitro Selection Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254544 VL - 60 IS - 35 ER - TY - JOUR A1 - Liaqat, Anam A1 - Stiller, Carina A1 - Michel, Manuela A1 - Sednev, Maksim V. A1 - Höbartner, Claudia T1 - N\(^6\)-Isopentenyladenosine in RNA Determines the Cleavage Site of Endonuclease Deoxyribozymes JF - Angewandte Chemie International Edition N2 - RNA-cleaving deoxyribozymes can serve as selective sensors and catalysts to examine the modification state of RNA. However, site-specific endonuclease deoxyribozymes that selectively cleave posttranscriptionally modified RNA are extremely rare and their specificity over unmodified RNA is low. In this study, we report that the native tRNA modification N\(^6\)-isopentenyladenosine (i\(^6\)A) strongly enhances the specificity and has the power to reconfigure the active site of an RNA-cleaving deoxyribozyme. Using in vitro selection, we identified a DNA enzyme that cleaves i\(^6\)A-modified RNA at least 2500-fold faster than unmodified RNA. Another deoxyribozyme shows unique and unprecedented behaviour by shifting its cleavage site in the presence of the i\(^6\)A RNA modification. Together with deoxyribozymes that are strongly inhibited by i\(^6\)A, these results highlight intricate ways of modulating the catalytic activity of DNA by posttranscriptional RNA modifications. KW - Deoxyribozymes KW - Epitranscriptomics KW - in vitro selection KW - RNA modification KW - site-specific RNA cleavage Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212121 ET - Early View ER -