TY - JOUR A1 - Schade, A. A1 - Bader, A. A1 - Huber, T. A1 - Kuhn, S. A1 - Czyszanowski, T. A1 - Pfenning, A. A1 - Rygała, M. A1 - Smołka, T. A1 - Motyka, M. A1 - Sęk, G. A1 - Hartmann, F. A1 - Höfling, S. T1 - Monolithic high contrast grating on GaSb/AlAsSb based epitaxial structures for mid-infrared wavelength applications JF - Optics Express N2 - We demonstrate monolithic high contrast gratings (MHCG) based on GaSb/AlAs0.08Sb0.92 epitaxial structures with sub-wavelength gratings enabling high reflection of unpolarized mid-infrared radiation at the wavelength range from 2.5 to 5 µm. We study the reflectivity wavelength dependence of MHCGs with ridge widths ranging from 220 to 984 nm and fixed 2.6 µm grating period and demonstrate that peak reflectivity of above 0.7 can be shifted from 3.0 to 4.3 µm for ridge widths from 220 to 984 nm, respectively. Maximum reflectivity of up to 0.9 at 4 µm can be achieved. The experiments are in good agreement with numerical simulations, confirming high process flexibility in terms of peak reflectivity and wavelength selection. MHCGs have hitherto been regarded as mirrors enabling high reflection of selected light polarization. With this work, we show that thoughtfully designed MHCG yields high reflectivity for both orthogonal polarizations simultaneously. Our experiment demonstrates that MHCGs are promising candidates to replace conventional mirrors like distributed Bragg reflectors to realize resonator based optical and optoelectronic devices such as resonant cavity enhanced light emitting diodes and resonant cavity enhanced photodetectors in the mid-infrared spectral region, for which epitaxial growth of distributed Bragg reflectors is challenging. KW - monolithic grating KW - high contrast KW - mid-infrared wavelength applications KW - epitaxial structures KW - GaSb/AlAsSb Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350346 VL - 31 IS - 10 ER - TY - JOUR A1 - Czerniuk, T. A1 - Brüggemann, C. A1 - Tepper, J. A1 - Brodbeck, S. A1 - Schneider, C. A1 - Kamp, M. A1 - Höfling, S. A1 - Glavin, B. A. A1 - Yakovlev, D. R. A1 - Akimov, A. V. A1 - Bayer, M. T1 - Lasing from active optomechanical resonators JF - Nature Communications N2 - Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator's optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations--photons, phonons and electrons--can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge. KW - physical sciences KW - applied physics KW - optical physics Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121559 VL - 5 ER - TY - JOUR A1 - Kim, N. Y. A1 - Kusudo, K. A1 - Löffler, A. A1 - Höfling, S. A1 - Forchel, A. A1 - Yamamoto, Y. T1 - Exciton-polariton condensates near the Dirac point in a triangular lattice JF - New Journal of Physics N2 - Dirac particles, massless relativistic entities, obey linear energy dispersions and hold important implications in particle physics. The recent discovery of Dirac fermions in condensed matter systems including graphene and topological insulators has generated a great deal of interest in exploring the relativistic properties associated with Dirac physics in solid-state materials. In addition, there are stimulating research activities to engineer Dirac particles, elucidating their exotic physical properties in a controllable setting. One of the successful platforms is the ultracold atom-optical lattice system, whose dynamics can be manipulated and probed in a clean environment. A microcavity exciton-polariton-lattice system offers the advantage of forming high-orbital condensation in non-equilibrium conditions, which enables one to explore novel quantum orbital order in two dimensions. In this paper, we experimentally construct the band structures near Dirac points, the vertices of the first hexagonal Brillouin zone with exciton-polariton condensates trapped in a triangular lattice. Due to the finite spectral linewidth, the direct map of band structures at Dirac points is elusive; however, we identify the linear part above Dirac points and its associated velocity value is similar to ~0.9-2 x \(10^8 cm s^{-1}\), consistent with the theoretical estimate \(1 x 10^8 cm s^{-1}\) with a \(2 \mu m\) lattice constant. We envision that the exciton-polariton condensates in lattices would be a promising solid-state platform, where the system order parameter can be accessed in both real and momentum spaces. KW - Bose-Einstein condensation KW - carbon nanotubes KW - graphene KW - electron KW - dynamics KW - fermions KW - trap KW - gas Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123103 SN - 1367-2630 VL - 15 IS - 035032 ER - TY - JOUR A1 - Kasprzak, J. A1 - Sivalertporn, K. A1 - Albert, F. A1 - Schneider, C. A1 - Höfling, S. A1 - Kamp, M. A1 - Forchel, A. A1 - Muljarov, E. A. A1 - Langbein, W. T1 - Coherence dynamics and quantum-to-classical crossover in an exciton-cavity system in the quantum strong coupling regime JF - New Journal of Physics N2 - Interaction between light and matter generates optical nonlinearities, which are particularly pronounced in the quantum strong coupling regime. When a single bosonic mode couples to a single fermionic mode, a Jaynes-Cummings (JC) ladder is formed, which we realize here using cavity photons and quantum dot excitons. We measure and model the coherent anharmonic response of this strongly coupled exciton-cavity system at resonance. Injecting two photons into the cavity, we demonstrate a \(\sqrt 2\) larger polariton splitting with respect to the vacuum Rabi splitting. This is achieved using coherent nonlinear spectroscopy, specifically four-wave mixing, where the coherence between the ground state and the first (second) rung of the JC ladder can be interrogated for positive (negative) delays. With increasing excitation intensity and thus rising average number of injected photons, we observe spectral signatures of the quantum-to-classical crossover of the strong coupling regime. KW - Jaynes-Cummings ladder KW - spectral interferometry KW - photon KW - dot KW - spectroscopy KW - oscillations KW - microcavity KW - resonance KW - light Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123005 SN - 1367-2630 VL - 15 IS - 045013 ER - TY - JOUR A1 - Rudno-Rudziński, W. A1 - Syperek, M. A1 - Andrezejewski, J. A1 - Maryński, A. A1 - Misiewicz, J. A1 - Somers, A. A1 - Höfling, S. A1 - Reithmaier, J. P. A1 - Sęk, G. T1 - Carrier delocalization in InAs/InGaAlAs/InP quantum-dash-based tunnel injection system for 1.55 μm emission JF - AIP Advances N2 - We have investigated optical properties of hybrid two-dimensional-zero-dimensional (2D-0D) tunnel structures containing strongly elongated InAs/InP(001) quantum dots (called quantum dashes), emitting at 1.55 μm. These quantum dashes (QDashes) are separated by a 2.3 nm-width barrier from an InGaAs quantum well (QW), lattice matched to InP. We have tailored quantum-mechanical coupling between the states confined in QDashes and a QW by changing the QW thickness. By combining modulation spectroscopy and photoluminescence excitation, we have determined the energies of all relevant optical transitions in the system and proven the carrier transfer from the QW to the QDashes, which is the fundamental requirement for the tunnel injection scheme. A transformation between 0D and mixed-type 2D-0D character of an electron and a hole confinement in the ground state of the hybrid system have been probed by time-resolved photoluminescence that revealed considerable changes in PL decay time with the QW width changes. The experimental discoveries have been explained by band structure calculations in the framework of the eight-band k·p model showing that they are driven by delocalization of the lowest energy hole state. The hole delocalization process from the 0D QDash confinement is unfavorable for optical devices based on such tunnel injection structures. KW - physics KW - surface collisions KW - electronic coupling KW - transition radiation KW - time-resolved photoluminescence KW - photoluminescence excitation KW - modulation spectroscopy KW - quantum dots KW - quantum wells KW - delocalization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181787 VL - 7 IS - 1 ER - TY - JOUR A1 - Beierlein, J. A1 - Egorov, O. A. A1 - Harder, T. H. A1 - Gagel, P. A1 - Emmerling, M. A1 - Schneider, C. A1 - Höfling, S. A1 - Peschel, U. A1 - Klembt, S. T1 - Bloch Oscillations of Hybrid Light‐Matter Particles in a Waveguide Array JF - Advanced Optical Materials N2 - Bloch oscillations are a phenomenon well known from quantum mechanics where electrons in a lattice experience an oscillatory motion in the presence of an electric field gradient. Here, the authors report on Bloch oscillations of hybrid light−matter particles, called exciton‐polaritons (polaritons), being confined in an array of coupled microcavity waveguides. To this end, the waveguide widths and their mutual couplings are carefully designed such that a constant energy gradient is induced perpendicular to the direction of motion of the propagating polaritons. This technique allows us to directly observe and study Bloch oscillations in real‐ and momentum‐space. Furthermore, the experimental findings are supported by numerical simulations based on a modified Gross–Pitaevskii approach. This work provides an important transfer of basic concepts of quantum mechanics to integrated solid state devices, using quantum fluids of light. KW - Bloch oscillations KW - exciton‐polaritons KW - polariton condensation KW - waveguides Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239814 VL - 9 IS - 13 ER -