TY - JOUR A1 - Degen, Tobias A1 - Hovestadt, Thomas A1 - Mitesser, Oliver A1 - Hölker, Franz T1 - Altered sex-specific mortality and female mating success: ecological effects and evolutionary responses JF - Ecosphere N2 - Theory predicts that males and females should often join the mating pool at different times (sexual dimorphism in timing of emergence [SDT]) as the degree of SDT affects female mating success. We utilize an analytical model to explore (1) how important SDT is for female mating success, (2) how mating success might change if either sex's mortality (abruptly) increases, and (3) to what degree evolutionary responses in SDT may be able to mitigate the consequences of such mortality increase. Increasing male pre‐mating mortality has a non‐linear effect on the fraction of females mated: The effect is initially weak, but at some critical level a further increase in male mortality has a stronger effect than a similar increase in female mortality. Such a change is expected to impose selection for reduced SDT. Increasing mortality during the mating season has always a stronger effect on female mating success if the mortality affects the sex that emerges first. This bias results from the fact that enhancing mortality of the earlier emerging sex reduces female–male encounter rates. However, an evolutionary response in SDT may effectively mitigate such consequences. Further, if considered independently for females and males, the predicted evolutionary response in SDT could be quite dissimilar. The difference between female and male evolutionary response in SDT leads to marked differences in the fraction of fertilized females under certain conditions. Our model may provide general guidelines for improving harvesting of populations, conservation management of rare species under altered environmental conditions, or maintaining long‐term efficiency of pest‐control measures. KW - evolutionary response KW - sexual dimorphism in timing KW - sex-specific mortality KW - reproductive asynchrony KW - mating success Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170953 VL - 8 IS - 5 ER - TY - JOUR A1 - Degen, Tobias A1 - Hovestadt, Thomas A1 - Mitesser, Oliver A1 - Hölker, Franz T1 - High female survival promotes evolution of protogyny and xexual conflict JF - PLoS ONE N2 - Existing models explaining the evolution of sexual dimorphism in the timing of emergence (SDT) in Lepidoptera assume equal mortality rates for males and females. The limiting assumption of equal mortality rates has the consequence that these models are only able to explain the evolution of emergence of males before females, i.e. protandry-the more common temporal sequence of emergence in Lepidoptera. The models fail, however, in providing adaptive explanations for the evolution of protogyny, where females emerge before males, but protogyny is not rare in insects. The assumption of equal mortality rates seems too restrictive for many insects, such as butterflies. To investigate the influence of unequal mortality rates on the evolution of SDT, we present a generalised version of a previously published model where we relax this assumption. We find that longer life-expectancy of females compared to males can indeed favour the evolution of protogyny as a fitness enhancing strategy. Moreover, the encounter rate between females and males and the sex-ratio are two important factors that also influence the evolution of optimal SDT. If considered independently for females and males the predicted strategies can be shown to be evolutionarily stable (ESS). Under the assumption of equal mortality rates the difference between the females' and males' ESS remains typically very small. However, female and male ESS may be quite dissimilar if mortality rates are different. This creates the potential for an 'evolutionary conflict' between females and males. Bagworm moths (Lepidoptera: Psychidae) provide an exemplary case where life-history attributes are such that protogyny should indeed be the optimal emergence strategy from the males' and females' perspectives: (i) Female longevity is considerably larger than that of males, (ii) encounter rates between females and males are presumably low, and (iii) females mate only once. Protogyny is indeed the general mating strategy found in the bagworm family. KW - mortality rates KW - bagworms Lepidoptera KW - size dimorphism KW - mating success KW - life span KW - armyworm Lepidoptera KW - adaptive growth KW - males emerge KW - protandry KW - butterflies Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143586 VL - 10 IS - 3 ER - TY - JOUR A1 - Storms, Mona A1 - Jakhar, Aryan A1 - Mitesser, Oliver A1 - Jechow, Andreas A1 - Hölker, Franz A1 - Degen, Tobias A1 - Hovestadt, Thomas A1 - Degen, Jacqueline T1 - The rising moon promotes mate finding in moths JF - Communications Biology N2 - To counteract insect decline, it is essential to understand the underlying causes, especially for key pollinators such as nocturnal moths whose ability to orientate can easily be influenced by ambient light conditions. These comprise natural light sources as well as artificial light, but their specific relevance for moth orientation is still unknown. We investigated the influence of moonlight on the reproductive behavior of privet hawkmoths (Sphinx ligustri) at a relatively dark site where the Milky Way was visible while the horizon was illuminated by distant light sources and skyglow. We show that male moths use the moon for orientation and reach females significantly faster with increasing moon elevation. Furthermore, the choice of flight direction depended on the cardinal position of the moon but not on the illumination of the horizon caused by artificial light, indicating that the moon plays a key role in the orientation of male moths. KW - animal behaviour KW - biodiversity KW - conservation biology KW - entomology KW - urban ecology Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301365 VL - 5 ER -