TY - JOUR A1 - Hahn, Tim A1 - Karolien, Hilde A1 - Dresler, Thomas A1 - Kowarsch, Linda A1 - Reif, Andreas A1 - Fallgatter, Andreas J. T1 - Linking online gaming and addictive behavior: converging evidence for a general reward deficiency in frequent online garners JF - Frontiers in Behavioral Neuroscience N2 - Millions of people regularly play so-called massively multiplayer online role playing games (MMORPGs). Recently, it has been argued that MMORPG overuse is becoming a significant health problem worldwide. Symptoms such as tolerance, withdrawal, and craving have been described. Based on behavioral, resting state, and task-related neuroimaging data, we test whether frequent players of the MMORPG "World of VVarcraft" (WoW) similar to drug addicts and individuals with an increased risk for addictions show a generally deficient reward system. In frequent players of the MMORPG "World of VVarcraft" (WoW-players) and in a control group of non-gamers we assessed (1) trait sensitivity to reward (SR), (2) BOLD responses during monetary reward processing in the ventral striatum, and (3) ventral-striatal resting-state dynamics. We found a decreased neural activation in the ventral striatum during the anticipation of both small and large monetary rewards. Additionally, we show generally altered neurodynamics in this region independent of any specific task for WoW players (resting state). On the behavioral level, we found differences in trait SR, suggesting that the reward processing deficiencies found in this study are not a consequence of gaming, but predisposed to it. These findings empirically support a direct link between frequent online gaming and the broad field of behavioral and drug addiction research, thus opening new avenues for clinical interventions in addicted gamers and potentially improving the assessment of addiction-risk in the vast population of frequent gamers. KW - behavioral activation system KW - video-game KW - drug-addiction KW - sensitivity KW - dopamine KW - anticipation KW - massively multiplayer online role playing games KW - world of warcraft KW - resting-state fMRI KW - monetary incentive delay task KW - reward deficiency syndrome Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114737 SN - 1662-5153 VL - 14 IS - 8 ER - TY - JOUR A1 - Guhn, Anne A1 - Dresler, Thomas A1 - Andreatta, Marta A1 - Müller, Laura D. A1 - Hahn, Tim A1 - Tupak, Sara V. A1 - Polak, Thomas A1 - Deckert, Jürgen A1 - Herrmann, Martin J. T1 - Medial prefrontal cortex stimulation modulates the processing of conditioned fear N2 - The extinction of conditioned fear depends on an efficient interplay between the amygdala and the medial prefrontal cortex (mPFC). In rats, high-frequency electrical mPFC stimulation has been shown to improve extinction by means of a reduction of amygdala activity. However, so far it is unclear whether stimulation of homologues regions in humans might have similar beneficial effects. Healthy volunteers received one session of either active or sham repetitive transcranial magnetic stimulation (rTMS) covering the mPFC while undergoing a 2-day fear conditioning and extinction paradigm. Repetitive TMS was applied offline after fear acquisition in which one of two faces (CS+ but not CS−) was associated with an aversive scream (UCS). Immediate extinction learning (day 1) and extinction recall (day 2) were conducted without UCS delivery. Conditioned responses (CR) were assessed in a multimodal approach using fear-potentiated startle (FPS), skin conductance responses (SCR), functional near-infrared spectroscopy (fNIRS), and self-report scales. Consistent with the hypothesis of a modulated processing of conditioned fear after high-frequency rTMS, the active group showed a reduced CS+/CS− discrimination during extinction learning as evident in FPS as well as in SCR and arousal ratings. FPS responses to CS+ further showed a linear decrement throughout both extinction sessions. This study describes the first experimental approach of influencing conditioned fear by using rTMS and can thus be a basis for future studies investigating a complementation of mPFC stimulation to cognitive behavioral therapy (CBT). KW - fear conditioning KW - memory consolidation and extinction KW - learning KW - transcranial magnetic stimulation (TMS) KW - medial prefrontal cortex (mPFC) Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111309 ER -