TY - JOUR A1 - Lu, Jinping A1 - Dreyer, Ingo A1 - Dickinson, Miles Sasha A1 - Panzer, Sabine A1 - Jaślan, Dawid A1 - Navarro-Retamal, Carlos A1 - Geiger, Dietmar A1 - Terpitz, Ulrich A1 - Becker, Dirk A1 - Stroud, Robert M. A1 - Marten, Irene A1 - Hedrich, Rainer T1 - Vicia faba SV channel VfTPC1 is a hyperexcitable variant of plant vacuole two pore channels JF - eLife N2 - To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca\(^{2+}\). In our search for species-dependent functional TPC1 channel variants with different luminal Ca\(^{2+}\) sensitivity, we found in total three acidic residues present in Ca\(^{2+}\) sensor sites 2 and 3 of the Ca\(^{2+}\)-sensitive AtTPC1 channel from Arabidopsis thaliana that were neutral in its Vicia faba ortholog and also in those of many other Fabaceae. When expressed in the Arabidopsis AtTPC1-loss-of-function background, wild-type VfTPC1 was hypersensitive to vacuole depolarization and only weakly sensitive to blocking luminal Ca\(^{2+}\). When AtTPC1 was mutated for these VfTPC1-homologous polymorphic residues, two neutral substitutions in Ca\(^{2+}\) sensor site 3 alone were already sufficient for the Arabidopsis At-VfTPC1 channel mutant to gain VfTPC1-like voltage and luminal Ca\(^{2+}\) sensitivity that together rendered vacuoles hyperexcitable. Thus, natural TPC1 channel variants exist in plant families which may fine-tune vacuole excitability and adapt it to environmental settings of the particular ecological niche. KW - A. thaliana KW - Brassicaceae KW - Fabaceae KW - pore KW - potassium channel KW - voltage gating KW - vacuolar calcium sensor Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350264 VL - 12 ER - TY - JOUR A1 - Ghirardo, Andrea A1 - Nosenko, Tetyana A1 - Kreuzwieser, Jürgen A1 - Winkler, J. Barbro A1 - Kruse, Jörg A1 - Albert, Andreas A1 - Merl-Pham, Juliane A1 - Lux, Thomas A1 - Ache, Peter A1 - Zimmer, Ina A1 - Alfarraj, Saleh A1 - Mayer, Klaus F. X. A1 - Hedrich, Rainer A1 - Rennenberg, Heinz A1 - Schnitzler, Jörg-Peter T1 - Protein expression plasticity contributes to heat and drought tolerance of date palm JF - Oecologia N2 - Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental fluctuations. KW - abiotic stress KW - isoprene KW - proteomics KW - photosynthesis KW - Phoenix dactylifera Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-308075 SN - 0029-8549 SN - 1432-1939 VL - 197 IS - 4 ER - TY - JOUR A1 - Jaślan, Dawid A1 - Dreyer, Ingo A1 - Lu, Jinping A1 - O'Malley, Ronan A1 - Dindas, Julian A1 - Marten, Irene A1 - Hedrich, Rainer T1 - Voltage-dependent gating of SV channel TPC1 confers vacuole excitability JF - Nature Communications N2 - In contrast to the plasma membrane, the vacuole membrane has not yet been associated with electrical excitation of plants. Here, we show that mesophyll vacuoles from Arabidopsis sense and control the membrane potential essentially via the K\(^+\)-permeable TPC1 and TPK channels. Electrical stimuli elicit transient depolarization of the vacuole membrane that can last for seconds. Electrical excitability is suppressed by increased vacuolar Ca\(^{2+}\) levels. In comparison to wild type, vacuoles from the fou2 mutant, harboring TPC1 channels insensitive to luminal Ca\(^{2+}\), can be excited fully by even weak electrical stimuli. The TPC1-loss-of-function mutant tpc1-2 does not respond to electrical stimulation at all, and the loss of TPK1/TPK3-mediated K\(^{+}\) transport affects the duration of TPC1-dependent membrane depolarization. In combination with mathematical modeling, these results show that the vacuolar K\(^+\)-conducting TPC1 and TPK1/TPK3 channels act in concert to provide for Ca\(^{2+}\)- and voltage-induced electrical excitability to the central organelle of plant cells. KW - Biophysics KW - Plant signalling Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202029 VL - 10 ER - TY - JOUR A1 - Hürter, Anna-Lena A1 - Fort, Sébastian A1 - Cottaz, Sylvain A1 - Hedrich, Rainer A1 - Geiger, Dietmar A1 - Roelfsema, M. Rob G. T1 - Mycorrhizal lipochitinoligosaccharides (LCOs) depolarize root hairs of Medicago truncatula JF - PLoS ONE N2 - Arbuscular Mycorrhiza and Root Nodule Symbiosis are symbiotic interactions with a high benefit for plant growth and crop production. Thus, it is of great interest to understand the developmental process of these symbioses in detail. We analysed very early symbiotic responses of Medicago truncatula root hair cells, by stimulation with lipochitinoligosaccharides specific for the induction of nodules (Nod-LCOs), or the interaction with mycorrhiza (Myc-LCOs). Intracellular micro electrodes were used, in combination with Ca\(^{2+}\) sensitive reporter dyes, to study the relations between cytosolic Ca\(^{2+}\) signals and membrane potential changes. We found that sulfated Myc- as well as Nod-LCOs initiate a membrane depolarization, which depends on the chemical composition of these signaling molecules, as well as the genotype of the plants that were studied. A successive application of sulfated Myc-LCOs and Nod-LCOs resulted only in a single transient depolarization, indicating that Myc-LCOs can repress plasma membrane responses to Nod-LCOs. In contrast to current models, the Nod-LCO-induced depolarization precedes changes in the cytosolic Ca\(^{2+}\) level of root hair cells. The Nod-LCO induced membrane depolarization thus is most likely independent of cytosolic Ca\(^{2+}\) signals and nuclear Ca\(^{2+}\) spiking. KW - depolarization KW - Medicago truncatula KW - lipochitinoligosaccharides Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176841 VL - 13 IS - 5 ER - TY - JOUR A1 - Li, Kunkun A1 - Prada, Juan A1 - Damineli, Daniel S. C. A1 - Liese, Anja A1 - Romeis, Tina A1 - Dandekar, Thomas A1 - Feijó, José A. A1 - Hedrich, Rainer A1 - Konrad, Kai Robert T1 - An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca\(^{2+}\) and H\(^{+}\) reveals new insights into ion signaling in plants JF - New Phytologist N2 - Whereas the role of calcium ions (Ca\(^{2+}\)) in plant signaling is well studied, the physiological significance of pH‐changes remains largely undefined. Here we developed CapHensor, an optimized dual‐reporter for simultaneous Ca\(^{2+}\) and pH ratio‐imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio‐temporal relationships between membrane voltage, Ca\(^{2+}\)‐ and pH‐dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca\(^{2+}\)‐dynamics lag behind pH‐dynamics during oscillatory growth, and pH correlates more with growth than Ca\(^{2+}\). In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA‐responses and even opened stomata in the presence of ABA, disclosing an important pH‐dependent GC signaling node. In MCs, a flg22‐induced membrane depolarization preceded Ca2+‐increases and cytosolic acidification by c. 2 min, suggesting a Ca\(^{2+}\)/pH‐independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage‐, Ca\(^{2+}\)‐ and pH‐responses. We propose close interrelation in Ca\(^{2+}\)‐ and pH‐signaling that is cell type‐ and stimulus‐specific and the pH having crucial roles in regulating PT growth and stomata movement. KW - abscisic acid (ABA) KW - calcium KW - flg22 KW - guard cells KW - imaging KW - ion signaling KW - pH KW - pollen tube Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239847 VL - 230 IS - 6 SP - 2292 EP - 2310 ER - TY - JOUR A1 - Dindas, Julian A1 - Scherzer, Sönke A1 - Roelfsema, M. Rob G. A1 - Meyer, Katharina von A1 - Müller, Heike M. A1 - Al-Rasheid, K. A. S. A1 - Palme, Klaus A1 - Dietrich, Petra A1 - Becker, Dirk A1 - Bennett, Malcolm J. A1 - Hedrich, Rainer T1 - AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling JF - Nature Communications N2 - Auxin is a key regulator of plant growth and development, but the causal relationship between hormone transport and root responses remains unresolved. Here we describe auxin uptake, together with early steps in signaling, in Arabidopsis root hairs. Using intracellular microelectrodes we show membrane depolarization, in response to IAA in a concentration- and pH-dependent manner. This depolarization is strongly impaired in aux1 mutants, indicating that AUX1 is the major transporter for auxin uptake in root hairs. Local intracellular auxin application triggers Ca2+ signals that propagate as long-distance waves between root cells and modulate their auxin responses. AUX1-mediated IAA transport, as well as IAA- triggered calcium signals, are blocked by treatment with the SCFTIR1/AFB - inhibitor auxinole. Further, they are strongly reduced in the tir1afb2afb3 and the cngc14 mutant. Our study reveals that the AUX1 transporter, the SCFTIR1/AFB receptor and the CNGC14 Ca2+ channel, mediate fast auxin signaling in roots. KW - auxin KW - permeation and transport Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225368 VL - 9 ER - TY - JOUR A1 - Liu, Yi A1 - Maierhofer, Tobias A1 - Rybak, Katarzyna A1 - Sklenar, Jan A1 - Breakspear, Andy A1 - Johnston, Matthew G. A1 - Fliegmann, Judith A1 - Huang, Shouguang A1 - Roelfsema, M. Rob G. A1 - Felix, Georg A1 - Faulkner, Christine A1 - Menke, Frank L.H. A1 - Geiger, Dietmar A1 - Hedrich, Rainer A1 - Robatzek, Silke T1 - Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure JF - eLife N2 - In plants, antimicrobial immune responses involve the cellular release of anions and are responsible for the closure of stomatal pores. Detection of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) induces currents mediated via slow-type (S-type) anion channels by a yet not understood mechanism. Here, we show that stomatal closure to fungal chitin is conferred by the major PRRs for chitin recognition, LYK5 and CERK1, the receptor-like cytoplasmic kinase PBL27, and the SLAH3 anion channel. PBL27 has the capacity to phosphorylate SLAH3, of which S127 and S189 are required to activate SLAH3. Full activation of the channel entails CERK1, depending on PBL27. Importantly, both S127 and S189 residues of SLAH3 are required for chitin-induced stomatal closure and anti-fungal immunity at the whole leaf level. Our results demonstrate a short signal transduction module from MAMP recognition to anion channel activation, and independent of ABA-induced SLAH3 activation. KW - plants Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202631 VL - 8 ER - TY - JOUR A1 - Du, Baoguo A1 - Ma, Yuhua A1 - Yáñez‐Serrano, Ana Maria A1 - Arab, Leila A1 - Fasbender, Lukas A1 - Alfarraj, Saleh A1 - Albasher, Gadah A1 - Hedrich, Rainer A1 - White, Philip J. A1 - Werner, Christiane A1 - Rennenberg, Heinz T1 - Physiological responses of date palm (Phoenix dactylifera) seedlings to seawater and flooding JF - New Phytologist N2 - In their natural environment along coast lines, date palms are exposed to seawater inundation and, hence, combined stress by salinity and flooding. To elucidate the consequences of this combined stress on foliar gas exchange and metabolite abundances in leaves and roots, date palm seedlings were exposed to flooding with seawater and its major constituents under controlled conditions. Seawater flooding significantly reduced CO\(_{2}\) assimilation, transpiration and stomatal conductance, but did not affect isoprene emission. A similar effect was observed upon NaCl exposure. By contrast, flooding with distilled water or MgSO\(_{4}\) did not affect CO\(_{2}\)/H\(_{2}\)O gas exchange or stomatal conductance significantly, indicating that neither flooding itself, nor seawater sulfate, contributed greatly to stomatal closure. Seawater exposure increased Na and Cl contents in leaves and roots, but did not affect sulfate contents significantly. Metabolite analyses revealed reduced abundances of foliar compatible solutes, such as sugars and sugar alcohols, whereas nitrogen compounds accumulated in roots. Reduced transpiration upon seawater exposure may contribute to controlling the movement of toxic ions to leaves and, therefore, can be seen as a mechanism to cope with salinity. The present results indicate that date palm seedlings are tolerant towards seawater exposure to some extent, and highly tolerant to flooding. KW - compatible solutes and other metabolites KW - date palm KW - flooding KW - salinity KW - shoot–root interaction KW - stomatal conductance KW - sulfate Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228226 VL - 229 IS - 6 SP - 3318 EP - 3329 ER -