TY - JOUR A1 - Reichel, Thomas A1 - Herz, Stefan A1 - el Tabbakh, Mohammed A1 - Bley, Thorsten Alexander A1 - Plumhoff, Piet A1 - Rueckl, Kilian T1 - Less than 9.5-mm coracohumeral distance on axial magnetic resonance imaging scans predicts for subscapularis tear JF - JSES International N2 - Background Diagnosis of subscapularis (SSC) tendon lesions on magnetic resonance imaging (MRI) can be challenging. A small coracohumeral distance (CHD) has been associated with SSC tears. This study was designed to define a specific threshold value for CHD to predict SSC tears on axial MRI scans. Methods This retrospective study included 172 shoulders of 168 patients who underwent arthroscopic surgery for rotator cuff tear or glenohumeral instability. Diagnostic arthroscopy confirmed an SSC tear in 62 cases (36.0%, test group a), rotator cuff tear tears other than SSC in 71 cases (41.3%, control group b) and glenohumeral instability without any rotator cuff tear in 39 cases (22.7%, zero-sample group c). All patients had a preoperative MRI of the shoulder (1.5T or 3T). Minimum CHD was measured on axial fat-suppressed proton density-, T2-, or T1-weigthed sequences. Receiver operating characteristics analysis was used to determine the threshold value for CHD, and sensitivity and specificity were calculated. Results CHD measurement had a good interobserver reliability (Intraclass correlation coefficient 0.799). Mean CHD was highly significantly (P < .001) less for test group a (mean 7.3 mm, standard deviation ± 2.2) compared with control group b (mean 11.1 mm, standard deviation ± 2.3) or zero-sample group c (mean 13.6 mm, standard deviation ± 2.9). A threshold value of CHD <9.5 mm had a sensitivity of 83.6% and a specificity of 83.9% to predict SSC tears. Conclusion A CHD <9.5 mm on MRI is predictive of SSC lesions and a valuable tool to diagnose SSC tears. KW - subscapularis tear KW - coracohumeral distance KW - rotator cuff tear KW - coracohumeral impingement Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259118 VL - 5 IS - 3 ER - TY - JOUR A1 - Hock, Michael A1 - Terekhov, Maxim A1 - Stefanescu, Maria Roxana A1 - Lohr, David A1 - Herz, Stefan A1 - Reiter, Theresa A1 - Ankenbrand, Markus A1 - Kosmala, Aleksander A1 - Gassenmaier, Tobias A1 - Juchem, Christoph A1 - Schreiber, Laura Maria T1 - B\(_{0}\) shimming of the human heart at 7T JF - Magnetic Resonance in Medicine N2 - Purpose Inhomogeneities of the static magnetic B\(_{0}\) field are a major limiting factor in cardiac MRI at ultrahigh field (≥ 7T), as they result in signal loss and image distortions. Different magnetic susceptibilities of the myocardium and surrounding tissue in combination with cardiac motion lead to strong spatio‐temporal B\(_{0}\)‐field inhomogeneities, and their homogenization (B0 shimming) is a prerequisite. Limitations of state‐of‐the‐art shimming are described, regional B\(_{0}\) variations are measured, and a methodology for spherical harmonics shimming of the B\(_{0}\) field within the human myocardium is proposed. Methods The spatial B\(_{0}\)‐field distribution in the heart was analyzed as well as temporal B\(_{0}\)‐field variations in the myocardium over the cardiac cycle. Different shim region‐of‐interest selections were compared, and hardware limitations of spherical harmonics B\(_{0}\) shimming were evaluated by calibration‐based B0‐field modeling. The role of third‐order spherical harmonics terms was analyzed as well as potential benefits from cardiac phase–specific shimming. Results The strongest B\(_{0}\)‐field inhomogeneities were observed in localized spots within the left‐ventricular and right‐ventricular myocardium and varied between systolic and diastolic cardiac phases. An anatomy‐driven shim region‐of‐interest selection allowed for improved B\(_{0}\)‐field homogeneity compared with a standard shim region‐of‐interest cuboid. Third‐order spherical harmonics terms were demonstrated to be beneficial for shimming of these myocardial B\(_{0}\)‐field inhomogeneities. Initial results from the in vivo implementation of a potential shim strategy were obtained. Simulated cardiac phase–specific shimming was performed, and a shim term‐by‐term analysis revealed periodic variations of required currents. Conclusion Challenges in state‐of‐the‐art B\(_{0}\) shimming of the human heart at 7 T were described. Cardiac phase–specific shimming strategies were found to be superior to vendor‐supplied shimming. KW - 7 T KW - B KW - cardiac MRI KW - shimming KW - ultrahigh field Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218096 VL - 85 IS - 1 SP - 182 EP - 196 ER -