TY - JOUR A1 - Degen, Tobias A1 - Hovestadt, Thomas A1 - Mitesser, Oliver A1 - Hölker, Franz T1 - Altered sex-specific mortality and female mating success: ecological effects and evolutionary responses JF - Ecosphere N2 - Theory predicts that males and females should often join the mating pool at different times (sexual dimorphism in timing of emergence [SDT]) as the degree of SDT affects female mating success. We utilize an analytical model to explore (1) how important SDT is for female mating success, (2) how mating success might change if either sex's mortality (abruptly) increases, and (3) to what degree evolutionary responses in SDT may be able to mitigate the consequences of such mortality increase. Increasing male pre‐mating mortality has a non‐linear effect on the fraction of females mated: The effect is initially weak, but at some critical level a further increase in male mortality has a stronger effect than a similar increase in female mortality. Such a change is expected to impose selection for reduced SDT. Increasing mortality during the mating season has always a stronger effect on female mating success if the mortality affects the sex that emerges first. This bias results from the fact that enhancing mortality of the earlier emerging sex reduces female–male encounter rates. However, an evolutionary response in SDT may effectively mitigate such consequences. Further, if considered independently for females and males, the predicted evolutionary response in SDT could be quite dissimilar. The difference between female and male evolutionary response in SDT leads to marked differences in the fraction of fertilized females under certain conditions. Our model may provide general guidelines for improving harvesting of populations, conservation management of rare species under altered environmental conditions, or maintaining long‐term efficiency of pest‐control measures. KW - evolutionary response KW - sexual dimorphism in timing KW - sex-specific mortality KW - reproductive asynchrony KW - mating success Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170953 VL - 8 IS - 5 ER - TY - JOUR A1 - Degen, Tobias A1 - Hovestadt, Thomas A1 - Mitesser, Oliver A1 - Hölker, Franz T1 - High female survival promotes evolution of protogyny and xexual conflict JF - PLoS ONE N2 - Existing models explaining the evolution of sexual dimorphism in the timing of emergence (SDT) in Lepidoptera assume equal mortality rates for males and females. The limiting assumption of equal mortality rates has the consequence that these models are only able to explain the evolution of emergence of males before females, i.e. protandry-the more common temporal sequence of emergence in Lepidoptera. The models fail, however, in providing adaptive explanations for the evolution of protogyny, where females emerge before males, but protogyny is not rare in insects. The assumption of equal mortality rates seems too restrictive for many insects, such as butterflies. To investigate the influence of unequal mortality rates on the evolution of SDT, we present a generalised version of a previously published model where we relax this assumption. We find that longer life-expectancy of females compared to males can indeed favour the evolution of protogyny as a fitness enhancing strategy. Moreover, the encounter rate between females and males and the sex-ratio are two important factors that also influence the evolution of optimal SDT. If considered independently for females and males the predicted strategies can be shown to be evolutionarily stable (ESS). Under the assumption of equal mortality rates the difference between the females' and males' ESS remains typically very small. However, female and male ESS may be quite dissimilar if mortality rates are different. This creates the potential for an 'evolutionary conflict' between females and males. Bagworm moths (Lepidoptera: Psychidae) provide an exemplary case where life-history attributes are such that protogyny should indeed be the optimal emergence strategy from the males' and females' perspectives: (i) Female longevity is considerably larger than that of males, (ii) encounter rates between females and males are presumably low, and (iii) females mate only once. Protogyny is indeed the general mating strategy found in the bagworm family. KW - mortality rates KW - bagworms Lepidoptera KW - size dimorphism KW - mating success KW - life span KW - armyworm Lepidoptera KW - adaptive growth KW - males emerge KW - protandry KW - butterflies Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143586 VL - 10 IS - 3 ER - TY - JOUR A1 - Chipperfield, Joseph D. A1 - Dytham, Calvin A1 - Hovestadt, Thomas T1 - An Updated Algorithm for the Generation of Neutral Landscapes by Spectral Synthesis N2 - Background: Patterns that arise from an ecological process can be driven as much from the landscape over which the process is run as it is by some intrinsic properties of the process itself. The disentanglement of these effects is aided if it possible to run models of the process over artificial landscapes with controllable spatial properties. A number of different methods for the generation of so-called ‘neutral landscapes’ have been developed to provide just such a tool. Of these methods, a particular class that simulate fractional Brownian motion have shown particular promise. The existing methods of simulating fractional Brownian motion suffer from a number of problems however: they are often not easily generalisable to an arbitrary number of dimensions and produce outputs that can exhibit some undesirable artefacts. Methodology: We describe here an updated algorithm for the generation of neutral landscapes by fractional Brownian motion that do not display such undesirable properties. Using Monte Carlo simulation we assess the anisotropic properties of landscapes generated using the new algorithm described in this paper and compare it against a popular benchmark algorithm. Conclusion/Significance: The results show that the existing algorithm creates landscapes with values strongly correlated in the diagonal direction and that the new algorithm presented here corrects this artefact. A number of extensions of the algorithm described here are also highlighted: we describe how the algorithm can be employed to generate landscapes that display different properties in different dimensions and how they can be combined with an environmental gradient to produce landscapes that combine environmental variation at the local and macro scales. KW - Landschaft KW - Monte-Carlo-Simulation KW - Brownsche Bewegung Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68938 ER - TY - JOUR A1 - Gros, Andreas A1 - Hovestadt, Thomas A1 - Poethke, Hans Joachim T1 - Evolution of sex-biased dispersal : the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding N2 - Abstract: Inbreeding avoidance and asymmetric competition over resources have both been identified as factors favoring the evolution of sex-biased dispersal. It has also been recognized that sex-specific costs of dispersal would select for sex-biased dispersal, but there is little quantitative information on this aspect. In this paper we explore (i) the quantitative relationship between cost-asymmetry and a bias in dispersal, (ii) the influence of demographic stochasticity on this effect, and (iii) how inbreeding and cost-asymmetry interact in their effect on sex-specific dispersal. We adjust an existing analytical model to account for sex-specific costs of dispersal. Based on numerical calculations we predict a severe bias in dispersal already for small differences in dispersal costs. We corroborate these predictions in individual-based simulations, but show that demographic stochasticity generally leads to more balanced dispersal. In combination with inbreeding, cost asymmetries will usually determine which of the two sexes becomes the more dispersive. KW - asymmetric dispersal costs KW - kin-selection KW - numerical model KW - individual-based simulations Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48705 ER - TY - JOUR A1 - Poethke, Hans J. A1 - Hovestadt, Thomas T1 - Evolution of density-and patch-size-dependent dispersal rates N2 - Based on a marginal value approach, we derive a nonlinear expression for evolutionarily stable (ES) dispersal rates in a metapopulation with global dispersal. For the general case of density-dependent population growth, our analysis shows that individual dispersal rates should decrease with patch capacity and-beyond a certain threshold-increase with population density. We performed a number of spatially explicit, individual-based simulation experiments to test these predictions and to explore further the relevance of variation in the rate of population increase, density dependence, environmental fluctuations and dispersal mortality on the evolution of dispersal rates. They confirm the predictions of our analytical approach. In addition, they show that dispersal rates in metapopulations mostly depend on dispersal mortality and inter-patch variation in population density. The latter is dominantly driven by environmental fluctuations and the rate of population increase. These conclusions are not altered by the introduction of neighbourhood dispersal. With patch capacities in the order of 100 individuals, kin competition seems to be of negligible importance for ES dispersal rates except when overall dispersal rates are low. KW - Metapopulation KW - Dichte KW - Verteilung KW - density-dependent dispersal KW - metapopulation KW - patch size KW - ESS KW - dispersal rate KW - individual based model (IBM) Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49659 ER - TY - JOUR A1 - Gros, Andreas A1 - Poethke, Hans Joachim A1 - Hovestadt, Thomas T1 - Sex-specific spatio-temporal variability in reproductive success promotes the evolution of sex-biased dispersal N2 - Abstract: Inbreeding depression, asymmetries in costs or benefits of dispersal, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce male-biased dispersal. The latter evolves if the between-parch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if the habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others. KW - sex-biased dispersal KW - demographic stochasticity KW - metapopulation KW - individual-based simulation KW - sex-specific competition Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48711 ER - TY - JOUR A1 - Lakovic, Milica A1 - Poethke, Hans-Joachim A1 - Hovestadt, Thomas T1 - Dispersal timing: Emigration of insects living in patchy environments JF - PLoS One N2 - Dispersal is a life-history trait affecting dynamics and persistence of populations; it evolves under various known selective pressures. Theoretical studies on dispersal typically assume 'natal dispersal', where individuals emigrate right after birth. But emigration may also occur during a later moment within a reproductive season ('breeding dispersal'). For example, some female butterflies first deposit eggs in their natal patch before migrating to other site(s) to continue egg-laying there. How breeding compared to natal dispersal influences the evolution of dispersal has not been explored. To close this gap we used an individual-based simulation approach to analyze (i) the evolution of timing of breeding dispersal in annual organisms, (ii) its influence on dispersal (compared to natal dispersal). Furthermore, we tested (iii) its performance in direct evolutionary contest with individuals following a natal dispersal strategy. Our results show that evolution should typically result in lower dispersal under breeding dispersal, especially when costs of dispersal are low and population size is small. By distributing offspring evenly across two patches, breeding dispersal allows reducing direct sibling competition in the next generation whereas natal dispersal can only reduce trans-generational kin competition by producing highly dispersive offspring in each generation. The added benefit of breeding dispersal is most prominent in patches with small population sizes. Finally, the evolutionary contests show that a breeding dispersal strategy would universally out-compete natal dispersal. KW - animal migration KW - statistical disperison KW - organismal evolution KW - animal sexual behavior KW - habitats KW - insects KW - carrying capacity KW - moths and butterflies Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126466 VL - 10 IS - 7 ER - TY - JOUR A1 - Poethke, Hans-Joachim A1 - Hovestadt, Thomas A1 - Mitesser, Oliver T1 - Local extinction and the evolution of dispersal rates: Causes and correlations N2 - We present the results of individual-based simulation experiments on the evolution of dispersal rates of organisms living in metapopulations. We find conflicting results regarding the relationship between local extinction rate and evolutionarily stable (ES) dispersal rate depending on which principal mechanism causes extinction: if extinction is caused by environmental catastrophes eradicating local populations, we observe a positive correlation between extinction and ES dispersal rate; if extinction is a consequence of stochastic local dynamics and environmental fluctuations, the correlation becomes ambiguous; and in cases where extinction is caused by dispersal mortality, a negative correlation between local extinction rate and ES dispersal rate emerges. We conclude that extinction rate, which both affects and is affected by dispersal rates, is not an ideal predictor for optimal dispersal rates. KW - Ausbreitung KW - Evolution KW - Computersimulation KW - Metapopulation KW - dispersal KW - evolution KW - ESS KW - metapopulation KW - extinction KW - individual-based model Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47718 ER - TY - JOUR A1 - Hovestadt, Thomas T1 - Möglichkeiten und Kriterien für die Bestimmung von Minimalarealen von Tierpopulationen und Ökosystembeständen N2 - No abstract available Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30150 ER - TY - JOUR A1 - Hovestadt, Thomas T1 - Die Bedeutung zufälligen Aussterbens für die Naturschutzplanung N2 - No abstract available Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30136 ER - TY - JOUR A1 - Mühlenberg, Michael A1 - Hovestadt, Thomas T1 - Das Zielartenkonzept N2 - No abstract available Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30140 ER - TY - JOUR A1 - Hovestadt, Thomas A1 - Poethke, Hans J. A1 - Messner, Stefan T1 - Variability in dispersal distances generates typical successional patterns: a simple simulation model N2 - More recently, it became clear that conclusions drawn from traditional ecological theory may be altered substantially if the spatial dimension of species interactions is considered explicitly. Regardless of the details of these models, spatially explicit simulations of ecological processes have nearly universally shown that spatial or spatio-temporal patterns in species distributions can emerge even from homogeneous starting conditions; limited dispersal is one of the key factors responsible for the development of such aggregated and patchy distributions (cf., Pacala 1986, Holmes et al. 1994, Molofsky 1994, Tilman 1994, Bascompte and Sole 1995, 1997, 1998, Jeltsch et al. 1999). In line with these ideas, we wish to draw attention to the fact that in heterogeneous landscapes differences in characteristic dispersal distances between species are a sufficient precondition for the emergence of a successional pattern. We will use a simple, spatially explicit simulation program to demonstrate the validity of this statement. We will also show that the speed of the successional progress depends on scale and heterogeneity in the distribution of suitable habitat. KW - community KW - competition KW - environments KW - habitats KW - life-history Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48178 ER - TY - JOUR A1 - Poethke, Hans J. A1 - Pfenning, Brenda A1 - Hovestadt, Thomas T1 - The relative contribution of individual and kin selection to the evolution of density-dependent dispersal rates N2 - Questions: What are the relative contributions of kin selection and individual selection to the evolution of dispersal rates in fragmented landscapes? How do environmental parameters influence the relative contributions of both evolutionary forces? Features of the model: Individual-based simulation model of a metapopulation. Logistic local growth dynamics and density-dependent dispersal. An optional shuffling algorithm allows the continuous destruction of any genetic structure in the metapopulation. Ranges of key variables: Depending on dispersal mortality (0.05-0.4) and the strength of environmental fluctuations, mean dispersal probability varied between 0.05 and 0.5. Conclusions: For local population sizes of 100 individuals, kin selection alone could account for dispersal probabilities of up to 0.1. It may result in a ten-fold increase of optimal dispersal rates compared with those predicted on the basis of individual selection alone. Such a substantial contribution of kin selection to dispersal is restricted to cases where the overall dispersal probabilities are small (textless 0.1). In the latter case, as much as 30% of the total fitness of dispersing individuals could arise from the increased reproduction of kin left in the natal patch. KW - dispersal rate KW - dynamics KW - environmental correlation KW - evolutionary modelling KW - genetics KW - individual-based model KW - kin competition Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48225 ER - TY - JOUR A1 - Hovestadt, Thomas A1 - Mitesser, Oliver A1 - Elmes, Graham A1 - Thomas, Jeremy A. A1 - Hochberg, Michael E. T1 - An Evolutionarily Stable Strategy model for the evolution of dimorphic development in the butterfly Maculinea rebeli, a social parasite of Myrmica Ant Colonies N2 - Caterpillars of the butterfly Maculinea rebeli develop as parasites inside ant colonies. In intensively studied French populations, about 25% of caterpillars mature within 1 year (fast-developing larvae [FDL]) and the others after 2 years (slow-developing larvae [SDL]); all available evidence indicates that this ratio is under the control of egg-laying females. We present an analytical model to predict the evolutionarily stable fraction of FDL (pESS). The model accounts for added winter mortality of SDL, general and kin competition among caterpillars, a competitive advantage of SDL over newly entering FDL (priority effect), and the avoidance of renewed infection of ant nests by butterflies in the coming season (segregation). We come to the following conclusions: (1) all factors listed above can promote the evolution of delayed development; (2) kin competition and segregation stabilize pESS near 0.5; and (3) a priority effect is the only mechanism potentially selecting for. However, given the empirical data, pESS is predicted to fall closer to 0.5 than to the 0.25 that has been observed. In this particular system, bet hedging cannot explain why more than 50% of larvae postpone growth. Presumably, other fitness benefits for SDL, for example, higher fertility or longevity, also contribute to the evolution of delayed development. The model presented here may be of general applicability for systems where maturing individuals compete in small subgroups. KW - delayed development KW - growth dimorphism KW - evolutionarily stable strategy (ESS) KW - ant-butterfly interaction KW - social parasitism Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48165 ER - TY - JOUR A1 - Gros, Andreas A1 - Hovestadt, Thomas A1 - Poethke, Hans Joachim T1 - Evolution of local adaptions in dispersal strategies N2 - The optimal probability and distance of dispersal largely depend on the risk to end up in unsuitable habitat. This risk is highest close to the habitat’s edge and consequently, optimal dispersal probability and distance should decline towards the habitat’s border. This selection should lead to the emergence of spatial gradients in dispersal strategies. However, gene flow caused by dispersal itself is counteracting local adaptation. Using an individual based model we investigate the evolution of local adaptations of dispersal probability and distance within a single, circular, habitat patch. We compare evolved dispersal probabilities and distances for six different dispersal kernels (two negative exponential kernels, two skewed kernels, nearest neighbour dispersal and global dispersal) in patches of different size. For all kernels a positive correlation between patch size and dispersal probability emerges. However, a minimum patch size is necessary to allow for local adaptation of dispersal strategies within patches. Beyond this minimum patch area the difference in mean dispersal distance between center and edge increases linearly with patch radius, but the intensity of local adaptation depends on the dispersal kernel. Except for global and nearest neighbour dispersal, the evolved spatial pattern are qualitatively similar for both, mean dispersal probability and distance. We conclude, that inspite of the gene-flow originating from dispersal local adaptation of dispersal strategies is possible if a habitat is of sufficient size. This presumably holds for any realistic type of dispersal kernel. KW - Ausbreitung KW - Evolution KW - Computersimulation KW - Ökologie KW - nearest-neighbour dispersal KW - global dispersal KW - evolution KW - individual based simulation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45406 ER - TY - JOUR A1 - Bonte, Dries A1 - Hovestadt, Thomas A1 - Poethke, Hans Joachim T1 - Sex-specific dispersal and evolutionary rescue in metapopulations infected by male killing endosymbionts N2 - Background: Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because the resulting change in sex ratio is expected to affect the evolution of sex-specific dispersal, we investigated under which environmental conditions strong sex-biased dispersal would emerge, and how this would affect host and endosymbiont metapopulation persistence. Results: We simulated host-endosymbiont metapopulation dynamics in an individual-based model, in which dispersal rates are allowed to evolve independently for the two sexes. Prominent male-biased dispersal emerges under conditions of low environmental stochasticity and high dispersal mortality. By applying a reshuffling algorithm, we show that kin-competition is a major driver of this evolutionary pattern because of the high within-population relatedness of males compared to those of females. Moreover, the evolution of sex-specific dispersal rescues metapopulations from extinction by (i) reducing endosymbiont fixation rates and (ii) by enhancing the extinction of endosymbionts within metapopulations that are characterized by low environmental stochasticity. Conclusion: Male killing endosymbionts induce the evolution of sex-specific dispersal, with prominent male-biased dispersal under conditions of low environmental stochasticity and high dispersal mortality. This male-biased dispersal emerges from stronger kin-competition in males compared to females and induces an evolutionary rescue mechanism. KW - Metapopulation KW - Theoretische Ökologie KW - Endosymbiont KW - Wirt KW - Parasit KW - Host-parasite interactions KW - individual-based model Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45351 ER - TY - JOUR A1 - Bonte, Dries A1 - Hovestadt, Thomas A1 - Poethke, Hans-Joachim T1 - Male-killing endosymbionts: influence of environmental conditions on persistance of host metapopulation N2 - Background: Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because of the reproductive manipulation, we expect them to have an effect on the evolution of host dispersal rates. In addition, male killing endosymbionts are expected to approach fixation when fitness of infected individuals is larger than that of uninfected ones and when transmission from mother to offspring is nearly perfect. They then vanish as the host population crashes. High observed infection rates and among-population variation in natural systems can consequently not be explained if defense mechanisms are absent and when transmission efficiency is perfect. Results: By simulating the host-endosymbiont dynamics in an individual-based metapopulation model we show that male killing endosymbionts increase host dispersal rates. No fitness compensations were built into the model for male killing endosymbionts, but they spread as a group beneficial trait. Host and parasite populations face extinction under panmictic conditions, i.e. conditions that favor the evolution of high dispersal in hosts. On the other hand, deterministic 'curing' (only parasite goes extinct) can occur under conditions of low dispersal, e.g. under low environmental stochasticity and high dispersal mortality. However, high and stable infection rates can be maintained in metapopulations over a considerable spectrum of conditions favoring intermediate levels of dispersal in the host. Conclusion: Male killing endosymbionts without explicit fitness compensation spread as a group selected trait into a metapopulation. Emergent feedbacks through increased evolutionary stable dispersal rates provide an alternative explanation for both, the high male-killing endosymbiont infection rates and the high among-population variation in local infection rates reported for some natural systems. KW - Metapopulation KW - Parasit KW - Wirt KW - Endosymbiont KW - Theoretische Ökologie KW - Host-parasite interactions KW - individual-based model Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45344 ER - TY - JOUR A1 - Bonte, Dries A1 - Hovestadt, Thomas A1 - Poethke, Hans-Joachim T1 - Evolution of dispersal polymorphism and local adaptation of dispersal distance in spatially structured landscapes N2 - Many organisms show polymorphism in dispersal distance strategies. This variation is particularly ecological relevant if it encompasses a functional separation of short- (SDD) and long-distance dispersal (LDD). It remains, however, an open question whether both parts of the dispersal kernel are similarly affected by landscape related selection pressures. We implemented an individual-based model to analyze the evolution of dispersal traits in fractal landscapes that vary in the proportion of habitat and its spatial configuration. Individuals are parthenogenetic with dispersal distance determined by two alleles on each individual‘s genome: one allele coding for the probability of global dispersal and one allele coding for the variance of a Gaussian local dispersal with mean value zero. Simulations show that mean distances of local dispersal and the probability of global dispersal, increase with increasing habitat availability, but that changes in the habitat's spatial autocorrelation impose opposing selective pressure: local dispersal distances decrease and global dispersal probabilities increase with decreasing spatial autocorrelation of the available habitat. Local adaptation of local dispersal distance emerges in landscapes with less than 70% of clumped habitat. These results demonstrate that long and short distance dispersal evolve separately according to different properties of the landscape. The landscape structure may consequently largely affect the evolution of dispersal distance strategies and the level of dispersal polymorphism. Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47856 ER - TY - BOOK A1 - Hovestadt, Thomas A1 - Roeser, J. A1 - Mühlenberg, M. T1 - Flächenbedarf von Tierpopulationen - als Kriterien für Maßnahmen des Biotopschutzes und als Datenbasis zur Beurteilung von Eingriffen in Natur und Landschaft N2 - Die Untersuchung des Flächenanspruchs von Tierpopulationen ist wegen folgender Gesichtspunkte wichtig: (a) Nachdem das Aussterben der Arten nicht nachläßt, erhebt sich die Frage nach den Möglichkeiten im Naturschutz, quantitative Forderungen zu begründen. (b) Da selbst gezielte Schutzmaßnahmen sinnlos werden, wenn die Voraussetzungen für das überleben der Arten oder Lebensgemeinschaften nicht gegeben sind, muß man sich fragen, wieviel an Umweltverschmutzung reduziert werden muß, damit der Artenschutz verwirklicht werden kann. Der "Extensivierungsspielraum" an sich reicht nicht aus. Die Frage nach dem Flächenanspruch schließt den Gedanken einer "mindestens notwendigen" Flächensicherung ein. Der Flächenbedarf einer Tierpopulation wird bestimmt durch (A) den Raumbedarf der Reproduktionseinheit, und (B) der Größe einer überlebensfähigen Population. (A) variiert durch die individuell und im Jahresverlauf schwankenden Aktionsraumgrößen und die unterschiedliche Habitatqualität. Die überlebensfähigkeit (B) einer Population ist von Zufallsprozessen abhängig und daher nur mit einer gewissen Wahrscheinlichkeit abschätzbar. Vier verschiedene (nicht anthropogene) Faktoren können selbst in einem geeigneten Habi tat zum Aussterben von Populationen führen: (a) demographische und (b) genetische Zufallsprozesse, (c) Umweltschwankungen und (d) (Natur) katastrophen. Eine Absicherung gegen diese Risikofaktoren wird durch Vergrößerung der Population, Erhöhung der Zahl geeigneter Habitate und Verringerung der Isolierung zwischen den bewohnten Flächen erreicht. Eine Mindestforderung (Minimalareal die mindest notwendige Fläche, die geschützt werden muß) kann nur an der sog. "minimum viable population" bemessen werden. Die Gefährdungsgradanalyse ("population vulnerability analysis") für eine bestimmte Tierart liefert die notwendigen Angaben zur Habitatqualität, Flächengröße und Lage der Flächen, die für die Zukunftssicherung einer Population unter natürlichen Bedingungen (z.B. "mit 95%iger Wahrscheinlichkeit die nächsten 50 Jahre überlebensfähig" ) notwendig sind. Sowohl beim konstruktiven Artenschutz wie auch für die Schadensbegrenzung bei Eingriffsregelungen sollte eine Zielart ausgewählt werden, damit die Flächensicherung eindeutig quantitativ begründet werden kann. Die Auswahl einer Zielart erfolgt nach Kriterien wie überregionaler Gefährdungsgrad, Schlüsselart, Chancen der Populationssicherung und wird regional nach den bestehenden Voraussetzungen (Vorkommen, Habitatangebot, Regionalplan) angepaßt. Die wesentlichen Aspekte eines ZielartenKonzeptes sind: Der Flächenbedarf für Schutz- und Ausgleichsmaßnahmen wird an den Überlebensaussichten einzelner Tierpopulationen bemessen -- Die Zukunftssicherung muß natürliche Bedingungen (nicht ständige Stützmaßnahmen) voraussetzen -- Die Analyse von Risikofaktoren bildet die Grundlage für die Abschätzung der Zukunftsaussichten. Es sind wissenschaftlich begründete, quantitative Aussagen möglich. Durch die Sicherung von Flächen mit geeigneter Habitatqualität profitieren viele weitere Arten von den Schutzmaßnahmen. Es entsteht ein künftiger Forschungsbedarf vor allem zu den Gefährdungsgradanalysen ausgewählter Zielarten. Für die praktische Umsetzung sind die Aufstellung einer regional angepaßten Zielartenliste, Habitateignungsanalysen und die Entwicklung von Populationsmodellen für Zielarten von seiten der biologischen Wissenschaft nötig. KW - Tiere KW - Population KW - Flächenbedarf KW - Tierart KW - Flächenbedarf Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33645 SN - 3-89336-057-3 ER - TY - JOUR A1 - Schenk, Mariela A1 - Mitesser, Oliver A1 - Hovestadt, Thomas A1 - Holzschuh, Andrea T1 - Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees JF - PeerJ N2 - Solitary bees in seasonal environments must align their life-cycles with favorable environmental conditions and resources; the timing of their emergence is highly fitness relevant. In several bee species, overwintering temperature influences both emergence date and body weight at emergence. High variability in emergence dates among specimens overwintering at the same temperatures suggests that the timing of emergence also depends on individual body conditions. However, possible causes for this variability, such as individual differences in body size or weight, have been rarely studied. In a climate chamber experiment using two spring-emerging mason bees (Osmia cornuta and O. bicornis), we investigated the relationship between temperature, emergence date, body weight, and body size, the last of which is not affected by overwintering temperature. Our study showed that body weight declined during hibernation more strongly in warm than in cold overwintering temperatures. Although bees emerged earlier in warm than in cold overwintering temperatures, at the time of emergence, bees in warm overwintering temperatures had lower body weights than bees in cold overwintering temperatures (exception of male O. cornuta). Among specimens that experienced the same overwintering temperatures, small and light bees emerged later than their larger and heavier conspecifics. Using a simple mechanistic model we demonstrated that spring-emerging solitary bees use a strategic approach and emerge at a date that is most promising for their individual fitness expectations. Our results suggest that warmer overwintering temperatures reduce bee fitness by causing a decrease in body weight at emergence. We showed furthermore that in order to adjust their emergence dates, bees use not only temperature but also their individual body condition as triggers. This may explain differing responses to climate warming within and among bee populations and may have consequences for bee-plant interactions as well as for the persistence of bee populations under climate change. KW - Wild bees KW - Timing KW - Fitness KW - Hibernation KW - Climate change KW - Mechanistic model KW - Osmia KW - Body weight KW - Body size KW - Pollinators Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228544 VL - 6 ER - TY - JOUR A1 - Joschinski, Jens A1 - Hovestadt, Thomas A1 - Krauss, Jochen T1 - Coping with shorter days: do phenology shifts constrain aphid fitness? JF - PeerJ N2 - Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual's life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change. KW - Homoptera aphididae KW - clock reproduction ecology KW - phenotypic plasticity KW - phenology shifts KW - insect timing KW - physiological constraints KW - day length KW - circadian rhythms KW - Acyrthosiphon pisum KW - climate change Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148382 VL - 3 IS - e1103 ER - TY - JOUR A1 - Hovestadt, Thomas A1 - Thomas, Jeremy A. A1 - Mitesser, Oliver A1 - Schönrogge, Karsten T1 - Multiple host use and the dynamics of host-switching in host-parasite systems JF - Insect Conservation and Diversity N2 - The link between multi‐host use and host switching in host–parasite interactions is a continuing area of debate. Lycaenid butterflies in the genus Maculinea, for example, exploit societies of different Myrmica ant species across their ranges, but there is only rare evidence that they simultaneously utilise multiple hosts at a local site, even where alternative hosts are present. We present a simple population‐genetic model accounting for the proportion of two alternative hosts and the fitness of parasite genotypes on each host. In agreement with standard models, we conclude that simultaneous host use is possible whenever fitness of heterozygotes on alternative hosts is not too low. We specifically focus on host‐shifting dynamics when the frequency of hosts changes. We find that (i) host shifting may proceed so rapidly that multiple host use is unlikely to be observed, (ii) back and forth transition in host use can exhibit a hysteresis loop, (iii) the parasites' host use may not be proportional to local host frequencies and be restricted to the rarer host under some conditions, and (iv) that a substantial decline in parasite abundance may typically precede a shift in host use. We conclude that focusing not just on possible equilibrium conditions but also considering the dynamics of host shifting in non‐equilibrium situations may provide added insights into host–parasite systems. KW - Host-parasite interaction KW - Maculinea butterfly KW - Myrmica ant non-equilibrium dynamics KW - population genetics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204747 VL - 12 IS - 6 ER - TY - JOUR A1 - Chaianunporn, Thotsapol A1 - Hovestadt, Thomas T1 - Emergence of spatially structured populations by area‐concentrated search JF - Ecology and Evolution N2 - The idea that populations are spatially structured has become a very powerful concept in ecology, raising interest in many research areas. However, despite dispersal being a core component of the concept, it typically does not consider the movement behavior underlying any dispersal. Using individual‐based simulations in continuous space, we explored the emergence of a spatially structured population in landscapes with spatially heterogeneous resource distribution and with organisms following simple area‐concentrated search (ACS); individuals do not, however, perceive or respond to any habitat attributes per se but only to their foraging success. We investigated the effects of different resource clustering pattern in landscapes (single large cluster vs. many small clusters) and different resource density on the spatial structure of populations and movement between resource clusters of individuals. As results, we found that foraging success increased with increasing resource density and decreasing number of resource clusters. In a wide parameter space, the system exhibited attributes of a spatially structured populations with individuals concentrated in areas of high resource density, searching within areas of resources, and “dispersing” in straight line between resource patches. “Emigration” was more likely from patches that were small or of low quality (low resource density), but we observed an interaction effect between these two parameters. With the ACS implemented, individuals tended to move deeper into a resource cluster in scenarios with moderate resource density than in scenarios with high resource density. “Looping” from patches was more likely if patches were large and of high quality. Our simulations demonstrate that spatial structure in populations may emerge if critical resources are heterogeneously distributed and if individuals follow simple movement rules (such as ACS). Neither the perception of habitat nor an explicit decision to emigrate from a patch on the side of acting individuals is necessary for the emergence of such spatial structure. KW - area‐concentrated search KW - individual‐based model KW - metapopulation KW - spatially structured population Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311939 VL - 12 IS - 12 ER - TY - JOUR A1 - Redlich, Sarah A1 - Zhang, Jie A1 - Benjamin, Caryl A1 - Dhillon, Maninder Singh A1 - Englmeier, Jana A1 - Ewald, Jörg A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Hovestadt, Thomas A1 - Kollmann, Johannes A1 - Koellner, Thomas A1 - Kübert‐Flock, Carina A1 - Kunstmann, Harald A1 - Menzel, Annette A1 - Moning, Christoph A1 - Peters, Wibke A1 - Riebl, Rebekka A1 - Rummler, Thomas A1 - Rojas‐Botero, Sandra A1 - Tobisch, Cynthia A1 - Uhler, Johannes A1 - Uphus, Lars A1 - Müller, Jörg A1 - Steffan‐Dewenter, Ingolf T1 - Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi‐scale experimental design JF - Methods in Ecology and Evolution N2 - Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981–2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6–9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5–10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs. KW - study design KW - biodiversity KW - climate change KW - ecosystem functioning KW - insect monitoring KW - land use KW - space-for-time approach KW - spatial scales Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258270 VL - 13 IS - 2 ER - TY - JOUR A1 - Horn, Melanie A1 - Mitesser, Oliver A1 - Hovestadt, Thomas A1 - Yoshii, Taishi A1 - Rieger, Dirk A1 - Helfrich-Förster, Charlotte T1 - The circadian clock improves fitness in the fruit fly, Drosophila melanogaster JF - Frontiers in Physiology N2 - It is assumed that a properly timed circadian clock enhances fitness, but only few studies have truly demonstrated this in animals. We raised each of the three classical Drosophila period mutants for >50 generations in the laboratory in competition with wildtype flies. The populations were either kept under a conventional 24-h day or under cycles that matched the mutant’s natural cycle, i.e., a 19-h day in the case of pers mutants and a 29-h day for perl mutants. The arrhythmic per0 mutants were grown together with wildtype flies under constant light that renders wildtype flies similar arrhythmic as the mutants. In addition, the mutants had to compete with wildtype flies for two summers in two consecutive years under outdoor conditions. We found that wildtype flies quickly outcompeted the mutant flies under the 24-h laboratory day and under outdoor conditions, but perl mutants persisted and even outnumbered the wildtype flies under the 29-h day in the laboratory. In contrast, pers and per0 mutants did not win against wildtype flies under the 19-h day and constant light, respectively. Our results demonstrate that wildtype flies have a clear fitness advantage in terms of fertility and offspring survival over the period mutants and – as revealed for perl mutants – this advantage appears maximal when the endogenous period resonates with the period of the environment. However, the experiments indicate that perl and pers persist at low frequencies in the population even under the 24-h day. This may be a consequence of a certain mating preference of wildtype and heterozygous females for mutant males and time differences in activity patterns between wildtype and mutants. KW - competition KW - mutants KW - resonance theory KW - mating preference KW - fertility Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195738 SN - 1664-042X VL - 10 IS - 1374 ER - TY - JOUR A1 - Storms, Mona A1 - Jakhar, Aryan A1 - Mitesser, Oliver A1 - Jechow, Andreas A1 - Hölker, Franz A1 - Degen, Tobias A1 - Hovestadt, Thomas A1 - Degen, Jacqueline T1 - The rising moon promotes mate finding in moths JF - Communications Biology N2 - To counteract insect decline, it is essential to understand the underlying causes, especially for key pollinators such as nocturnal moths whose ability to orientate can easily be influenced by ambient light conditions. These comprise natural light sources as well as artificial light, but their specific relevance for moth orientation is still unknown. We investigated the influence of moonlight on the reproductive behavior of privet hawkmoths (Sphinx ligustri) at a relatively dark site where the Milky Way was visible while the horizon was illuminated by distant light sources and skyglow. We show that male moths use the moon for orientation and reach females significantly faster with increasing moon elevation. Furthermore, the choice of flight direction depended on the cardinal position of the moon but not on the illumination of the horizon caused by artificial light, indicating that the moon plays a key role in the orientation of male moths. KW - animal behaviour KW - biodiversity KW - conservation biology KW - entomology KW - urban ecology Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301365 VL - 5 ER - TY - JOUR A1 - Frank, Erik Thomas A1 - Schmitt, Thomas A1 - Hovestadt, Thomas A1 - Mitesser, Oliver A1 - Stiegler, Jonas A1 - Linsenmair, Karl Eduard T1 - Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis JF - Science Advances N2 - Predators of highly defensive prey likely develop cost-reducing adaptations. The ant Megaponera analis is a specialized termite predator, solely raiding termites of the subfamily Macrotermitinae (in this study, mostly colonies of Pseudocanthotermes sp.) at their foraging sites. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites (for example, a caste specialized in fighting predators). Because M. analis incurs high injury/mortality risks when preying on termites, some risk-mitigating adaptations seem likely to have evolved. We show that a unique rescue behavior in M. analis, consisting of injured nestmates being carried back to the nest, reduces combat mortality. After a fight, injured ants are carried back by their nestmates; these ants have usually lost an extremity or have termites clinging to them and are able to recover within the nest. Injured ants that are forced experimentally to return without help, die in 32% of the cases. Behavioral experiments show that two compounds, dimethyl disulfide and dimethyl trisulfide, present in the mandibular gland reservoirs, trigger the rescue behavior. A model accounting for this rescue behavior identifies the drivers favoring its evolution and estimates that rescuing enables maintenance of a 28.7% larger colony size. Our results are the first to explore experimentally the adaptive value of this form of rescue behavior focused on injured nestmates in social insects and help us to identify evolutionary drivers responsible for this type of behavior to evolve in animals. KW - Megaponera analis KW - rescue behavior Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157933 VL - 3 IS - 4 ER - TY - JOUR A1 - Sieger, Charlotte Sophie A1 - Hovestadt, Thomas T1 - The degree of spatial variation relative to temporal variation influences evolution of dispersal JF - Oikos N2 - In the face of ongoing global climate and land use change, organisms have multiple possibilities to cope with the modification of their environment. The two main possibilities are to either adapt locally or disperse to a more suitable habitat. The evolution of both local adaptation and dispersal interacts and can be influenced by the spatial and temporal variation (of e.g. temperature or precipitation). In an individual based model (IBM), we explore evolution of phenotypes in landscapes with varying degree of spatial relative to global temporal variation in order to examine its influence on the evolution of dispersal, niche optimum and niche width. The relationship between temporal and spatial variation did neither influence the evolution of local adaptation in the niche optimum nor of niche widths. Dispersal probability is highly influenced by the spatio‐temporal relationship: with increasing spatial variation, dispersal probability decreases. Additionally, the shape of the distribution of the trait values over patch attributes switches from hump‐ to U‐shaped. At low spatial variance more individuals emigrate from average habitats, at high spatial variance more from extreme habitats. The comparatively high dispersal probability in extreme patches of landscapes with a high spatial variation can be explained by evolutionary succession of two kinds of adaptive response. Early in the simulations, extreme patches in landscapes with a high spatial variability act as sink habitats, where population persistence depends on highly dispersive individuals with a wide niche. With ongoing evolution, local adaptation of the remaining individuals takes over, but simultaneously a possible bet‐hedging strategy promotes higher dispersal probabilities in those habitats. Here, in generations that experience extreme shifts from the temporal mean of the patch attribute, the expected fitness becomes higher for dispersing individuals than for philopatric individuals. This means that under certain circumstances, both local adaptation and high dispersal probability can be selected for for coping with the projected environmental changes in the future. KW - bet-hedging KW - dispersal KW - ecological niche KW - evolution KW - individual based model KW - spatial variation KW - temporal variation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239049 VL - 129 IS - 11 SP - 1611 EP - 1622 ER -