TY - JOUR A1 - Isaias, Ioannis U. A1 - Marzegan, Alberto A1 - Pezzoli, Gianni A1 - Marotta, Giorgio A1 - Canesi, Margherita A1 - Biella, Gabriele E. M. A1 - Volkmann, Jens A1 - Cavallari, Paolo T1 - A role for locus coeruleus in Parkinson tremor JF - Frontiers in Human Neuroscience N2 - We analyzed rest tremor, one of the etiologically most elusive hallmarks of Parkinson disease(PD), in 12 consecutive PD patients during a specific task activating the locus coeruleus (LC) to investigate a putative role of noradrenaline (NA) in tremor generation and suppression. Clinical diagnosis was confirmed in all subjects by reduced dopamine reuptake transporter (DAT) binding values investigated by single photon computed tomography imaging (SPECT) with [\(^{123}\)I] N-\(\omega\)-fluoropropyl-2 \(\beta\)-carbomethoxy-3 \(\beta\)-(4-iodophenyl) tropane (FP-CIT). The intensity of tremor (i.e., the power of Electromyography [EMG] signals), but not its frequency, significantly increased during the task. In six subjects, tremor appeared selectively during the task. In a second part of the study, we retrospectively reviewed SPECT with FP-CIT data and confirmed the lack of correlation between dopaminergic loss and tremor by comparing DAT binding values of 82 PD subjects with bilateral tremor (n = 27), unilateral tremor (n = 22), and no tremor (n = 33). This study suggests a role of the LC in Parkinson tremor. KW - locus coeruleus KW - disease KW - basal ganglia KW - resting tremor KW - functional neuroanatomy KW - dopamine KW - norepinephrine KW - progression KW - binding KW - rat KW - noradrenalin KW - parkinson disease KW - tremor Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133955 VL - 5 IS - 179 ER - TY - JOUR A1 - Isaias, Ioannis U. A1 - Brumberg, Joachim A1 - Pozzi, Nicoló G. A1 - Palmisano, Chiara A1 - Canessa, Andrea A1 - Marotta, Giogio A1 - Volkmann, Jens A1 - Pezzoli, Gianni T1 - Brain metabolic alterations herald falls in patients with Parkinson's disease JF - Annals of Clinical and Translational Neurology N2 - Pathophysiological understanding of gait and balance disorders in Parkinson’s disease is insufficient and late recognition of fall risk limits efficacious followup to prevent or delay falls. We show a distinctive reduction of glucose metabolism in the left posterior parietal cortex, with increased metabolic activity in the cerebellum, in parkinsonian patients 6–8 months before their first fall episode. Falls in Parkinson’s disease may arise from altered cortical processing of body spatial orientation, possibly predicted by abnormal cortical metabolism. KW - Parkionson's disease KW - brain metabolic alterations Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235982 VL - 7 IS - 4 ER - TY - JOUR A1 - Brumberg, Joachim A1 - Küsters, Sebastian A1 - Al-Momani, Ehab A1 - Marotta, Giorgio A1 - Cosgrove, Kelly P. A1 - van Dyck, Christopher H. A1 - Herrmann, Ken A1 - Homola, György A. A1 - Pezzoli, Gianni A1 - Buck, Andreas K. A1 - Volkmann, Jens A1 - Samnick, Samuel A1 - Isaias, Ioannis U. T1 - Cholinergic activity and levodopa-induced dyskinesia: a multitracer molecular imaging study JF - Annals of Clinical and Translational Neurology N2 - Objective: To investigate the association between levodopa‐induced dyskinesias and striatal cholinergic activity in patients with Parkinson's disease. Methods: This study included 13 Parkinson's disease patients with peak‐of‐dose levodopa‐induced dyskinesias, 12 nondyskinetic patients, and 12 healthy controls. Participants underwent 5‐[\(^{123}\)I]iodo‐3‐[2(S)‐2‐azetidinylmethoxy]pyridine single‐photon emission computed tomography, a marker of nicotinic acetylcholine receptors, [\(^{123}\)I]N‐ω‐fluoropropyl‐2β‐carbomethoxy‐3β‐(4‐iodophenyl)nortropane single‐photon emission computed tomography, to measure dopamine reuptake transporter density and 2‐[\(^{18}\)F]fluoro‐2‐deoxyglucose positron emission tomography to assess regional cerebral metabolic activity. Striatal binding potentials, uptake values at basal ganglia structures, and correlations with clinical variables were analyzed. Results: Density of nicotinic acetylcholine receptors in the caudate nucleus of dyskinetic subjects was similar to that of healthy controls and significantly higher to that of nondyskinetic patients, in particular, contralaterally to the clinically most affected side. Interpretation: Our findings support the hypothesis that the expression of dyskinesia may be related to cholinergic neuronal excitability in a dopaminergic‐depleted striatum. Cholinergic signaling would play a role in maintaining striatal dopaminergic responsiveness, possibly defining disease phenotype and progression. KW - levodopa-induced dyskinesia KW - cholinergic activity KW - Parkinson’s disease Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170406 VL - 4 IS - 9 ER - TY - JOUR A1 - Brumberg, Joachim A1 - Kuzkina, Anastasia A1 - Lapa, Constantin A1 - Mammadova, Sona A1 - Buck, Andreas A1 - Volkmann, Jens A1 - Sommer, Claudia A1 - Isaias, Ioannis U. A1 - Doppler, Kathrin T1 - Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy JF - Neurobiology of Disease N2 - Pathological aggregates of alpha-synuclein in peripheral dermal nerve fibers can be detected in patients with idiopathic Parkinson's disease and multiple system atrophy. This study combines skin biopsy staining for p-alpha-synuclein depositions and radionuclide imaging of the heart with [\(^{123}\)I]-metaiodobenzylguanidine to explore peripheral denervation in both diseases. To this purpose, 42 patients with a clinical diagnosis of Parkinson's disease or multiple system atrophy were enrolled. All patients underwent a standardized clinical workup including neurological evaluation, neurography, and blood samples. Skin biopsies were obtained from the distal and proximal leg, back, and neck for immunofluorescence double labeling with anti-p-alpha-synuclein and anti-PGP9.5. All patients underwent myocardial [\(^{123}\)I]-metaiodobenzylguanidine scintigraphy. Dermal p-alpha-synuclein was observed in 47.6% of Parkinson's disease patients and was mainly found in autonomic structures. 81.0% of multiple system atrophy patients had deposits with most of cases in somatosensory fibers. The [\(^{123}\)I]-metaiodobenzylguanidine heart-to-mediastinum ratio was lower in Parkinson's disease than in multiple system atrophy patients (1.94 +/- 0.63 vs. 2.91 +/- 0.96; p < 0.0001). Irrespective of the diagnosis, uptake was lower in patients with than without p-alpha-synuclein in autonomic structures (1.42 +/- 0.51 vs. 2.74 +/- 0.83; p < 0.0001). Rare cases of Parkinson's disease with p-alpha-synuclein in somatosensory fibers and multiple system atrophy patients with deposits in autonomic structures or both fiber types presented with clinically overlapping features. In conclusion, this study suggests that alpha-synuclein contributes to peripheral neurodegeneration and mediates the impairment of cardiac sympathetic neurons in patients with synucleinopathies. Furthermore, it indicates that Parkinson's disease and multiple system atrophy share pathophysiologic mechanisms of peripheral nervous system dysfunction with a clinical overlap. KW - peripheral nervous system KW - Parkinson's disease KW - skin biopsy KW - MIBG scintigraphy KW - multiple system atrophy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260061 VL - 153 ER - TY - JOUR A1 - Brumberg, Joachim A1 - Schröter, Nils A1 - Blazhenets, Ganna A1 - Frings, Lars A1 - Volkmann, Jens A1 - Lapa, Constantin A1 - Jost, Wolfgang H. A1 - Isaias, Ioannis U. A1 - Meyer, Philipp T. T1 - Differential diagnosis of parkinsonism: a head-to-head comparison of FDG PET and MIBG scintigraphy JF - NPJ Parkinsons Disease N2 - [\(^{18}\)F]fluorodeoxyglucose (FDG) PET and [\(^{123}\)I]metaiodobenzylguanidine (MIBG) scintigraphy may contribute to the differential diagnosis of neurodegenerative parkinsonism. To identify the superior method, we retrospectively evaluated 54 patients with suspected neurodegenerative parkinsonism, who were referred for FDG PET and MIBG scintigraphy. Two investigators visually assessed FDG PET scans using an ordinal 6-step score for disease-specific patterns of Lewy body diseases (LBD) or atypical parkinsonism (APS) and assigned the latter to the subgroups multiple system atrophy (MSA), progressive supranuclear palsy (PSP), or corticobasal syndrome. Regions-of-interest analysis on anterior planar MIBG images served to calculate the heart-to-mediastinum ratio. Movement disorder specialists blinded to imaging results established clinical follow-up diagnosis by means of guideline-derived case vignettes. Clinical follow-up (1.7 +/- 2.3 years) revealed the following diagnoses: n = 19 LBD (n = 17 Parkinson's disease [PD], n = 1 PD dementia, and n = 1 dementia with Lewy bodies), n = 31 APS (n = 28 MSA, n = 3 PSP), n = 3 non-neurodegenerative parkinsonism; n = 1 patient could not be diagnosed and was excluded. Receiver operating characteristic analyses for discriminating LBD vs. non-LBD revealed a larger area under the curve for FDG PET than for MIBG scintigraphy at statistical trend level for consensus rating (0.82 vs. 0.69, p = 0.06; significant for investigator #1: 0.83 vs. 0.69, p = 0.04). The analysis of PD vs. MSA showed a similar difference (0.82 vs. 0.69, p = 0.11; rater #1: 0.83 vs. 0.69, p = 0.07). Albeit the notable differences in diagnostic performance did not attain statistical significance, the authors consider this finding clinically relevant and suggest that FDG PET, which also allows for subgrouping of APS, should be preferred. KW - clinical diagnosis KW - F-18-FDG PET KW - disease KW - dementia KW - accuracy KW - stimulation KW - guidelines KW - criteria KW - brain KW - risk Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230675 VL - 6 ER - TY - JOUR A1 - Bolzoni, Francesco A1 - Esposti, Roberto A1 - Marchese, Silvia M. A1 - Pozzi, Nicoló G. A1 - Ramirez-Pasos, Uri E. A1 - Isaias, Ioannis U. A1 - Cavallari, Paolo T1 - Disrupt of intra-limb APA pattern in parkinsonian patients performing index-finger flexion JF - Frontiers in Physiology N2 - Voluntary movements induce postural perturbations which are counteracted by anticipatory postural adjustments (APAs). These actions are known to build up long fixation chains toward available support points (inter-limb APAs), so as to grant whole body equilibrium. Moreover, recent studies highlighted that APAs also build-up short fixation chains, within the same limb where a distal segment is moved (intra-limb APAs), aimed at stabilizing the proximal segments. The neural structures generating intra-limb APAs still need investigations; the present study aims to compare focal movement kinematics and intra-limb APA latencies and pattern between healthy subjects and parkinsonian patients, assuming the latter as a model of basal ganglia dysfunction. Intra-limb APAs that stabilize the arm when the index-finger is briskly flexed were recorded in 13 parkinsonian patients and in 10 age-matched healthy subjects. Index-finger movement was smaller in parkinsonian patients vs. healthy subjects (p = 0.01) and more delayed with respect to the onset of the prime mover flexor digitorum superficialis (FDS, p < 0.0001). In agreement with the literature, in all healthy subjects the FDS activation was preceded by an inhibitory intra-limb APA in biceps brachii (BB) and anterior deltoid (AD), and almost simultaneous to an excitatory intra-limb APA in triceps brachii (TB). In parkinsonian patients, no significant differences were found for TB and AD intra-limb APA timings, however only four patients showed an inhibitory intra-limb APA in BB, while other four did not show any BB intra-limb APAs and five actually developed a BB excitation. The frequency of occurrence of normal sign, lacking, and inverted BB APAs was different in healthy vs. parkinsonian participants (p = 0.0016). The observed alterations in index-finger kinematics and intra-limb APA pattern in parkinsonian patients suggest that basal ganglia, in addition to shaping the focal movement, may also contribute to intra-limb APA control. KW - intra-limb anticipatory postural adjustments KW - Parkinson disease KW - basal ganglia KW - motor control KW - human Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-369245 SN - 1664-042X VL - 9 ER - TY - JOUR A1 - Casarotto, Silvia A1 - Turco, Francesco A1 - Comanducci, Angela A1 - Perretti, Alessio A1 - Marotta, Giorgio A1 - Pezzoli, Gianni A1 - Rosanova, Mario A1 - Isaias, Ioannis U. T1 - Excitability of the supplementary motor area in Parkinson's disease depends on subcortical damage JF - Brain Stimulation N2 - Background Cortical dysfunctioning significantly contributes to the pathogenesis of motor symptoms in Parkinson's disease (PD). Objective We aimed at testing whether an acute levodopa administration has measurable and specific cortical effects possibly related to striatal dopaminergic deficit. Methods In thirteen PD patients, we measured the electroencephalographic responses to transcranial magnetic stimulation (TMS/EEG) of the supplementary motor area and superior parietal lobule (n = 8) before and after an acute intake of levodopa. We also performed a single-photon emission computed tomography and [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane to identify the more affected and the less affected brain side in each patient, according to the dopaminergic innervation loss of the putamen. Cortical excitability changes before and after an acute intake of levodopa were computed and compared between the more and the less affected brain side at the single-patient as well as at the group level. Results We found that levodopa intake induces a significant increase (P < 0.01) of cortical excitability nearby the supplementary motor area in the more affected brain side, greater (P < 0.025) than in the less affected brain side. Notably, cortical excitability changes nearby the superior parietal lobule were not statistically significant. Conclusions These results strengthen the idea that dysfunction of specific cortico-subcortical circuits may contribute to pathophysiology of PD symptoms. Most important, they support the use of navigated TMS/EEG as a non-invasive tool to better understand the pathophysiology of PD. KW - transcranial magnetic stimulation KW - electroencephalography KW - levodopa KW - dopamine KW - putamen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222261 VL - 12 ER - TY - JOUR A1 - Haufe, Stefan A1 - Isaias, Ioannis U. A1 - Pellegrini, Franziska A1 - Palmisano, Chiara T1 - Gait event prediction using surface electromyography in parkinsonian patients JF - Bioengineering N2 - Gait disturbances are common manifestations of Parkinson’s disease (PD), with unmet therapeutic needs. Inertial measurement units (IMUs) are capable of monitoring gait, but they lack neurophysiological information that may be crucial for studying gait disturbances in these patients. Here, we present a machine learning approach to approximate IMU angular velocity profiles and subsequently gait events using electromyographic (EMG) channels during overground walking in patients with PD. We recorded six parkinsonian patients while they walked for at least three minutes. Patient-agnostic regression models were trained on temporally embedded EMG time series of different combinations of up to five leg muscles bilaterally (i.e., tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, and vastus lateralis). Gait events could be detected with high temporal precision (median displacement of <50 ms), low numbers of missed events (<2%), and next to no false-positive event detections (<0.1%). Swing and stance phases could thus be determined with high fidelity (median F1-score of ~0.9). Interestingly, the best performance was obtained using as few as two EMG probes placed on the left and right vastus lateralis. Our results demonstrate the practical utility of the proposed EMG-based system for gait event prediction, which allows the simultaneous acquisition of an electromyographic signal to be performed. This gait analysis approach has the potential to make additional measurement devices such as IMUs and force plates less essential, thereby reducing financial and preparation overheads and discomfort factors in gait studies. KW - electromyography KW - inertial measurement units KW - gait-phase prediction KW - machine learning KW - Parkinson’s disease Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304380 SN - 2306-5354 VL - 10 IS - 2 ER - TY - JOUR A1 - Palmisano, Chiara A1 - Beccaria, Laura A1 - Haufe, Stefan A1 - Volkmann, Jens A1 - Pezzoli, Gianni A1 - Isaias, Ioannis U. T1 - Gait initiation impairment in patients with Parkinson’s disease and freezing of gait JF - Bioengineering N2 - Freezing of gait (FOG) is a sudden episodic inability to produce effective stepping despite the intention to walk. It typically occurs during gait initiation (GI) or modulation and may lead to falls. We studied the anticipatory postural adjustments (imbalance, unloading, and stepping phase) at GI in 23 patients with Parkinson’s disease (PD) and FOG (PDF), 20 patients with PD and no previous history of FOG (PDNF), and 23 healthy controls (HCs). Patients performed the task when off dopaminergic medications. The center of pressure (CoP) displacement and velocity during imbalance showed significant impairment in both PDNF and PDF, more prominent in the latter patients. Several measurements were specifically impaired in PDF patients, especially the CoP displacement along the anteroposterior axis during unloading. The pattern of segmental center of mass (SCoM) movements did not show differences between groups. The standing postural profile preceding GI did not correlate with outcome measurements. We have shown impaired motor programming at GI in Parkinsonian patients. The more prominent deterioration of unloading in PDF patients might suggest impaired processing and integration of somatosensory information subserving GI. The unaltered temporal movement sequencing of SCoM might indicate some compensatory cerebellar mechanisms triggering time-locked models of body mechanics in PD. KW - freezing of gait KW - gait initiation KW - Parkinson’s disease KW - posture KW - segmental centers of mass KW - anthropometric measurement KW - base of support Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297579 SN - 2306-5354 VL - 9 IS - 11 ER - TY - JOUR A1 - Palmisano, Chiara A1 - Brandt, Gregor A1 - Vissani, Matteo A1 - Pozzi, Nicoló G. A1 - Canessa, Andrea A1 - Brumberg, Joachim A1 - Marotta, Giorgio A1 - Volkmann, Jens A1 - Mazzoni, Alberto A1 - Pezzoli, Gianni A1 - Frigo, Carlo A. A1 - Isaias, Ioannis U. T1 - Gait Initiation in Parkinson’s Disease: Impact of Dopamine Depletion and Initial Stance Condition JF - Frontiers in Bioengineering and Biotechnology N2 - Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson’s disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment. KW - gait initiation KW - Parkinson’s disease KW - basal ganglia KW - dopamine KW - base of support KW - anthropometric measurements Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200801 SN - 2296-4185 VL - 8 ER -