TY - JOUR A1 - Ghanawi, Hanaa A1 - Hennlein, Luisa A1 - Zare, Abdolhossein A1 - Bader, Jakob A1 - Salehi, Saeede A1 - Hornburg, Daniel A1 - Ji, Changhe A1 - Sivadasan, Rajeeve A1 - Drepper, Carsten A1 - Meissner, Felix A1 - Mann, Matthias A1 - Jablonka, Sibylle A1 - Briese, Michael A1 - Sendtner, Michael T1 - Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to chromatin JF - Nucleic Acids Research N2 - Neurons critically rely on the functions of RNA-binding proteins to maintain their polarity and resistance to neurotoxic stress. HnRNP R has a diverse range of post-transcriptional regulatory functions and is important for neuronal development by regulating axon growth. Hnrnpr pre-mRNA undergoes alternative splicing giving rise to a full-length protein and a shorter isoform lacking its N-terminal acidic domain. To investigate functions selectively associated with the full-length hnRNP R isoform, we generated a Hnrnpr knockout mouse (Hnrnpr\(^{tm1a/tm1a}\)) in which expression of full-length hnRNP R was abolished while production of the truncated hnRNP R isoform was retained. Motoneurons cultured from Hnrnpr\(^{tm1a/tm1a}\) mice did not show any axonal growth defects but exhibited enhanced accumulation of double-strand breaks and an impaired DNA damage response upon exposure to genotoxic agents. Proteomic analysis of the hnRNP R interactome revealed the multifunctional protein Yb1 as a top interactor. Yb1-depleted motoneurons were defective in DNA damage repair. We show that Yb1 is recruited to chromatin upon DNA damage where it interacts with gamma-H2AX, a mechanism that is dependent on full-length hnRNP R. Our findings thus suggest a novel role of hnRNP R in maintaining genomic integrity and highlight the function of its N-terminal acidic domain in this context. KW - nuclear ribonucleoprotein-R KW - determining gene-product KW - actin messenger RNA KW - comet assay KW - genome wide KW - spinal cord KW - YB-1 KW - SMN KW - interacts KW - enrichment Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265687 VL - 49 IS - 21 ER - TY - JOUR A1 - Dombert, Benjamin A1 - Balk, Stefanie A1 - Lüningschrör, Patrick A1 - Moradi, Mehri A1 - Sivadasan, Rajeeve A1 - Saal-Bauernschubert, Lena A1 - Jablonka, Sibylle T1 - BDNF/trkB induction of calcium transients through Ca\(_{v}\)2.2 calcium channels in motoneurons corresponds to F-actin assembly and growth cone formation on β2-chain laminin (221) JF - Frontiers in Molecular Neuroscience N2 - Spontaneous Ca\(^{2+}\) transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca\(^{2+}\) influx and actin dynamics at axonal growth cones are not fully unraveled. In our study we addressed the question how neurotrophic factor signaling corresponds to cell autonomous excitability and growth cone formation. Primary motoneurons from mouse embryos were cultured on the synapse specific, β2-chain containing laminin isoform (221) regulating axon elongation through spontaneous Ca\(^{2+}\) transients that are in turn induced by enhanced clustering of N-type specific voltage-gated Ca\(^{2+}\) channels (Ca\(_{v}\)2.2) in axonal growth cones. TrkB-deficient (trkBTK\(^{-/-}\)) mouse motoneurons which express no full-length trkB receptor and wildtype motoneurons cultured without BDNF exhibited reduced spontaneous Ca\(^{2+}\) transients that corresponded to altered axon elongation and defects in growth cone morphology which was accompanied by changes in the local actin cytoskeleton. Vice versa, the acute application of BDNF resulted in the induction of spontaneous Ca\(^{2+}\) transients and Ca\(_{v}\)2.2 clustering in motor growth cones, as well as the activation of trkB downstream signaling cascades which promoted the stabilization of β-actin via the LIM kinase pathway and phosphorylation of profilin at Tyr129. Finally, we identified a mutual regulation of neuronal excitability and actin dynamics in axonal growth cones of embryonic motoneurons cultured on laminin-221/211. Impaired excitability resulted in dysregulated axon extension and local actin cytoskeleton, whereas upon β-actin knockdown Ca\(_{v}\)2.2 clustering was affected. We conclude from our data that in embryonic motoneurons BDNF/trkB signaling contributes to axon elongation and growth cone formation through changes in the local actin cytoskeleton accompanied by increased Ca\(_{v}\)2.2 clustering and local calcium transients. These findings may help to explore cellular mechanisms which might be dysregulated during maturation of embryonic motoneurons leading to motoneuron disease. KW - growth cone KW - BDNF KW - trkB KW - Ca\(_{v}\)2.2 KW - F-actin KW - motor axon Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159094 VL - 10 IS - 346 ER - TY - JOUR A1 - Dombert, Benjamin A1 - Sivadasan, Rajeeve A1 - Simon, Christian M. A1 - Jablonka, Sibylle A1 - Sendtner, Michael T1 - Presynaptic Localization of Smn and hnRNP R in Axon Terminals of Embryonic and Postnatal Mouse Motoneurons N2 - Spinal muscular atrophy (SMA) is caused by deficiency of the ubiquitously expressed survival motoneuron (SMN) protein. SMN is crucial component of a complex for the assembly of spliceosomal small nuclear ribonucleoprotein (snRNP) particles. Other cellular functions of SMN are less characterized so far. SMA predominantly affects lower motoneurons, but the cellular basis for this relative specificity is still unknown. In contrast to nonneuronal cells where the protein is mainly localized in perinuclear regions and the nucleus, Smn is also present in dendrites, axons and axonal growth cones of isolated motoneurons in vitro. However, this distribution has not been shown in vivo and it is not clear whether Smn and hnRNP R are also present in presynaptic axon terminals of motoneurons in postnatal mice. Smn also associates with components not included in the classical SMN complex like RNA-binding proteins FUS, TDP43, HuD and hnRNP R which are involved in RNA processing, subcellular localization and translation. We show here that Smn and hnRNP R are present in presynaptic compartments at neuromuscular endplates of embryonic and postnatal mice. Smn and hnRNP R are localized in close proximity to each other in axons and axon terminals both in vitro and in vivo. We also provide new evidence for a direct interaction of Smn and hnRNP R in vitro and in vivo, particularly in the cytosol of motoneurons. These data point to functions of SMN beyond snRNP assembly which could be crucial for recruitment and transport of RNA particles into axons and axon terminals, a mechanism which may contribute to SMA pathogenesis. KW - axons KW - spinal cord KW - cytosol KW - DAPI staining KW - immunoprecipitation KW - recombinant proteins KW - protein interactions KW - thoracic diaphragm Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113655 ER -