TY - JOUR A1 - Boivin, Valérie A1 - Beyersdorf, Niklas A1 - Palm, Dieter A1 - Nikolaev, Viacheslav O. A1 - Schlipp, Angela A1 - Müller, Justus A1 - Schmidt, Doris A1 - Kocoski, Vladimir A1 - Kerkau, Thomas A1 - Hünig, Thomas A1 - Ertl, Georg A1 - Lohse, Martin J. A1 - Jahns, Roland T1 - Novel Receptor-Derived Cyclopeptides to Treat Heart Failure Caused by \(Anti-β_1-Adrenoceptor\) Antibodies in a Human-Analogous Rat Model JF - PLoS One N2 - Despite recent therapeutic advances the prognosis of heart failure remains poor. Recent research suggests that heart failure is a heterogeneous syndrome and that many patients have stimulating auto-antibodies directed against the second extracellular loop of the \(β_1\) adrenergic receptor \((β_1EC2)\). In a human-analogous rat model such antibodies cause myocyte damage and heart failure. Here we used this model to test a novel antibody-directed strategy aiming to prevent and/or treat antibody-induced cardiomyopathy. To generate heart failure, we immunised n = 76/114 rats with a fusion protein containing the human β1EC2 (amino-acids 195–225) every 4 weeks; n = 38/114 rats were control-injected with 0.9% NaCl. Intravenous application of a novel cyclic peptide mimicking \(β_1EC2\) (\(β_1EC2-CP\), 1.0 mg/kg every 4 weeks) or administration of the \(β_1-blocker\) bisoprolol (15 mg/kg/day orally) was initiated either 6 weeks (cardiac function still normal, prevention-study, n = 24 (16 treated vs. 8 untreated)) or 8.5 months after the 1st immunisation (onset of cardiomyopathy, therapy-study, n = 52 (40 treated vs. 12 untreated)); n = 8/52 rats from the therapy-study received \(β_1EC2-CP/bisoprolol\) co-treatment. We found that \(β_1EC2-CP\) prevented and (alone or as add-on drug) treated antibody-induced cardiac damage in the rat, and that its efficacy was superior to mono-treatment with bisoprolol, a standard drug in heart failure. While bisoprolol mono-therapy was able to stop disease-progression, \(β_1EC2-CP\) mono-therapy -or as an add-on to bisoprolol- almost fully reversed antibody-induced cardiac damage. The cyclo¬peptide acted both by scavenging free \(anti-β_1EC2-antibodies\) and by targeting \(β_1EC2\)-specific memory B-cells involved in antibody-production. Our model provides the basis for the clinical translation of a novel double-acting therapeutic strategy that scavenges harmful \(anti-β_1EC2-antibodies\) and also selectively depletes memory B-cells involved in the production of such antibodies. Treatment with immuno-modulating cyclopeptides alone or as an add-on to \(β_1\)-blockade represents a promising new therapeutic option in immune-mediated heart failure. KW - memory B cells KW - antibodies KW - T cells KW - B cells KW - heart KW - heart failure KW - kidneys KW - enzyme-linked immunoassays Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126028 VL - 10 IS - 2 ER - TY - JOUR A1 - Morbach, Caroline A1 - Beyersdorf, Niklas A1 - Kerkau, Thomas A1 - Ramos, Gustavo A1 - Sahiti, Floran A1 - Albert, Judith A1 - Jahns, Roland A1 - Ertl, Georg A1 - Angermann, Christiane E. A1 - Frantz, Stefan A1 - Hofmann, Ulrich A1 - Störk, Stefan T1 - Adaptive anti-myocardial immune response following hospitalization for acute heart failure JF - ESC Heart Failure N2 - Aims It has been hypothesized that cardiac decompensation accompanying acute heart failure (AHF) episodes generates a pro-inflammatory environment boosting an adaptive immune response against myocardial antigens, thus contributing to progression of heart failure (HF) and poor prognosis. We assessed the prevalence of anti-myocardial autoantibodies (AMyA) as biomarkers reflecting adaptive immune responses in patients admitted to the hospital for AHF, followed the change in AMyA titres for 6 months after discharge, and evaluated their prognostic utility. Methods and results AMyA were determined in n = 47 patients, median age 71 (quartiles 60; 80) years, 23 (49%) female, and 24 (51%) with HF with preserved ejection fraction, from blood collected at baseline (time point of hospitalization) and at 6 month follow-up (visit F6). Patients were followed for 18 months (visit F18). The prevalence of AMyA increased from baseline (n = 21, 45%) to F6 (n = 36, 77%; P < 0.001). At F6, the prevalence of AMyA was higher in patients with HF with preserved ejection fraction (n = 21, 88%) compared with patients with reduced ejection fraction (n = 14, 61%; P = 0.036). During the subsequent 12 months after F6, that is up to F18, patients with newly developed AMyA at F6 had a higher risk for the combined endpoint of death or rehospitalization for HF (hazard ratio 4.79, 95% confidence interval 1.13–20.21; P = 0.033) compared with patients with persistent or without AMyA at F6. Conclusions Our results support the hypothesis that AHF may induce patterns of adaptive immune responses. More studies in larger populations and well-defined patient subgroups are needed to further clarify the role of the adaptive immune system in HF progression. KW - adaptive immune response KW - acute heart failure KW - anti-myocardial KW - autoantibody KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258907 VL - 8 IS - 4 ER - TY - JOUR A1 - Traub, Jan A1 - Grondey, Katja A1 - Gassenmaier, Tobias A1 - Schmitt, Dominik A1 - Fette, Georg A1 - Frantz, Stefan A1 - Boivin-Jahns, Valérie A1 - Jahns, Roland A1 - Störk, Stefan A1 - Stoll, Guido A1 - Reiter, Theresa A1 - Hofmann, Ulrich A1 - Weber, Martin S. A1 - Frey, Anna T1 - Sustained increase in serum glial fibrillary acidic protein after first ST-elevation myocardial infarction JF - International Journal of Molecular Sciences N2 - Acute ischemic cardiac injury predisposes one to cognitive impairment, dementia, and depression. Pathophysiologically, recent positron emission tomography data suggest astroglial activation after experimental myocardial infarction (MI). We analyzed peripheral surrogate markers of glial (and neuronal) damage serially within 12 months after the first ST-elevation MI (STEMI). Serum levels of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were quantified using ultra-sensitive molecular immunoassays. Sufficient biomaterial was available from 45 STEMI patients (aged 28 to 78 years, median 56 years, 11% female). The median (quartiles) of GFAP was 63.8 (47.0, 89.9) pg/mL and of NfL 10.6 (7.2, 14.8) pg/mL at study entry 0–4 days after STEMI. GFAP after STEMI increased in the first 3 months, with a median change of +7.8 (0.4, 19.4) pg/mL (p = 0.007). It remained elevated without further relevant increases after 6 months (+11.7 (0.6, 23.5) pg/mL; p = 0.015), and 12 months (+10.3 (1.5, 22.7) pg/mL; p = 0.010) compared to the baseline. Larger relative infarction size was associated with a higher increase in GFAP (ρ = 0.41; p = 0.009). In contrast, NfL remained unaltered in the course of one year. Our findings support the idea of central nervous system involvement after MI, with GFAP as a potential peripheral biomarker of chronic glial damage as one pathophysiologic pathway. KW - myocardial infarction KW - STEMI KW - glial fibrillary acidic protein KW - GFAP KW - neurofilament light chain KW - NfL KW - glial damage KW - cardiac magnetic resonance imaging KW - MRI KW - infarction size Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288261 SN - 1422-0067 VL - 23 IS - 18 ER -