TY - THES A1 - Joshi, Sanjeev T1 - Preparation and characterization of CdS nanoparticles T1 - DPräparat und characktereisierung von CdS Nanopartikeln N2 - Zusammenfassung CdS-Nanoteilchen mit Größen zwischen 1.1 und 4.2 nm wurden in Äthanol und mit Thioglycerol (TG)-Hülle synthetisiert. Es wurde gezeigt, dass die nass-chemische Synthese ohne Wasser und die Verwendung von TG als Hülle folgende Vorteile bieten: Es konnten kleinere Teilchen hergestellt und eine schmalere Größenverteilung erzielt werden. Zusätzlich wird dem Altern der Teilchen vorgebeugt, und die Ergebnisse sind besser reproduzierbar. Hochaufgelöste Photoemissions-Messungen an kleinen CdS-Teilchen (1.1, 1.4, 1.7, 1.8; 1.8 nm mit Glutathion-Hülle) ergaben Beiträge von fünf verschiedenen Schwefelatom-Typen zum S 2p-Gesamt Signal. Außerdem wurde beobachtet, dass Nanoteilchen unterschiedlicher Größe und/oder mit unterschiedlichen Hüllen-Substanzen verschiedene Photoemissionsspektren zeigen und verschieden starke Strahlenschäden aufweisen. Bei den 1.4 nm großen CdS-Teilchen entsprechen die Komponenten des S 2p-Signals entweder Schwefelatomen mit unterschiedlichen Cd-Nachbarn, Thiol-Schwefelatomen oder teilweise oxidiertem Schwefel. Die jeweilige Zuweisung der Schwefeltypen erfolgte über Intensitäts-Änderungen der einzelnen S 2p-Komponenten als Funktion der Photonenenergie und des Strahlenschadens. Die Daten der 1.4 nm großen CdS-Teilchen wurden mit PES-Intensitäts-Rechnungen verglichen, die auf einem neuen Strukturmodell-Ansatz basieren. Von den drei verwendeten CdS-Strukturmodellen konnte nur ein Modell mit 33 S-Atomen die Variation der experimentellen Intensitäten richtig wieder geben. Modelle von größeren Nanoteilchen mit beispielsweise 53 S-Atomen zeigen Abweichungen von den experimentellen Daten der 1.4 nm-Teilchen. Auf diese Weise kann indirekt auf die Größe der gemessenen Teilchen geschlossen werden. Die Intensitätsrechnungen wurden zum einen „per Hand“ zur groben Abschätzung durchgeführt, zum anderen wurden exaktere Berechnungen mit einem von L. Weinhardt und O. Fuchs entwickelten Programm angestellt. Diese bestätigen die Ergebnisse der Abschätzung. Zudem wurde festgestellt, dass die inelastische freie Weglänge λ keinen signifikanten Einfluss auf die Modellrechnungen hat. Die gemessenen Intensitäts-Änderungen konnten zwar mit mehreren leicht verchiedenen Modellen erklärt werden, allerdings führte nur ein kugelförmiges Teilchen-Modell auch zu den richtigen Intensitätsverhältnissen der einzelnen S 2p-Komponenten. Weiterhin konnte beobachtet werden, dass die elektronische Bandlücke größer ist als die optische Bandlücke. Bei den PES-Messungen wurden einige wichtige Einflüsse sichtbar. So spielen strahlenbedingte Effekte eine große Rolle. Kenntnisse über die Zeitskala solcher Effekte ermöglichen PES-Aufnahmen mit guter Signal-Qualität und erlauben eine Extraploation zur Situation ohne Strahlenschaden. Auch die Dünnschicht-Präparation beeinflusst die Spektren. Beispielsweise zeigten mit Elektrophorese hergestellte Filme Hinweise auf Agglomeration. Schichten, die per Tropfen-Deposition erzeugt wurden, weisen spektrale Änderungen am Rand der Probe auf, und Filme aus Nanoteilchen-Pulver waren nicht homogen. Mikro-Raman Experimente, die in Kollaboration mit Dr. M. Schmitt und Prof. W. Kiefer durchgeführt wurden, ließen große Unterschiede in den Spektren von Nanoteilchen und TG in Lösung erkennen. Dies wurde vor allem auf das Fehlen von S – H –Bindungen zurückgeführt und zeigt damit, dass alle TG-Moleküle verwertet oder ausgewaschen wurden. N2 - Very small, thioglycerol (TG)-capped CdS nanoparticles were synthesized by a wet chemical technique and investigated in the framework of this thesis. Also glutathione-capped particles were investigated for a comparison of the capping agents. High-resolution photoelectron spectroscopy using high-brilliance synchrotron radiation was applied as the major tool for the characterization of these particles. Additionally, the particles were investigated with UV-VIS absorption spectroscopy, XPS using a laboratory source, valence band photoemission spectroscopy (VBPES), near-edge x-ray absorption spectroscopy (NEXAFS), and micro-Raman spectroscopy to address various aspects of the particles. In the beginning, an overview on size quantization effects is given to create a theoretical background behind the work presented in this thesis. Furthermore, an overview of various conventional techniques for size determination is presented. Exact information about size, shape and size distribution of nanoparticles is not yet achievable because of experimental limitations of the various size determination methods. Nanoparticles, with a range of sizes from 1.1 to 4. 2 nm, were synthesized using non-aqueous preparation and a TG capping. It is demonstrated that the use of the non-aqueous wet chemical synthesis method enables the production of very small particles and prohibits the aging of the particles. Furthermore, TG capping leads to a significant improvement for a narrow size distribution. Moreover, the results are very reproducible with TG capping and non-aqueous synthesis. Monodispersed particles can be produced by a size selective precipitation method, however, the reproducibility is questionable due to the aqueous medium of the synthesis in this case. High-resolution photoemission measurements on the small particles, i.e., 1.1 nm (CdS-A), 1.4 nm (CdS-B), 1.7 nm (CdS-C), and 1.8 nm (CdS-D, glutathione-capped), revealed five components as constituents of the S 2p signal after a careful data evaluation. Furthermore, it was observed that the particles with different sizes and capping show differences in the photoemission spectra and also in the beam damage behaviour. The different components of CdS-B were assigned as S atoms with different Cd neighbors, S atoms from thiol and S atoms in a partially oxidized state, based on the observed intensity changes of these components as a function of photon energy and beam damage, and on previous photoemission work on CdS nanoparticles [23, 45]. Furthermore, it was found that this assignment cannot be directly transferred to other particles. A new approach of structural model-based photoemission intensity calculations in comparison with the experimental data is presented. This enables us to understand subtle features in the photoemission spectra, in particular the intensity changes of the different components as a function of photon energy and beam exposure. This approach is especially applied to CdS-B (as some structural information for this particle is avialable from XRD), using three different structural models. It is found that a structural model with 33 S atoms can explain the experimental intensity changes of CdS-B. Furthermore, it is found that the photoemission spectra can be used to determine the particle size indirectly, as other plausible models show significant deviation from the experimental data. To study the various aspects by calculations, such as the influence of the particle shape and of the value of the mean free path, a program developed with L. Weinhardt and O. Fuchs is used for the intensity calculations. In order to determine a reasonable value of the mean free path for the used photon energies, two different equations from previous reports (Seah et al. and Powell et al.) are applied. As average mean free path values for the two photon energies we chose 5.5 ± 2 Å (254 eV) and 14 ± 2 Å (720 eV). The program calculation confirms the result of simple “manual” calculations of the different models. Moreover, it is tested that the value of , used in the calculations does not produce any significant influence on the calculation results. Another interesting feature is derived from the calculations that a model with a rather round shape produces similar intensity ratios for the different components to those of the data. Thus this new approach of analysis of photoemission spectra offers a way to determine particle sizes and to some extent to give an impression of the approximate particle shape. Furthermore, it is observed that the electronic band gap is larger compared to the optical band gap, which was attributed to an enhanced electron-hole correlation for optical absorption in small particles. The XPS experiments performed in the laboratory using an x-ray tube, show that the thin films produced from a freshly synthesized nanoparticle solution are fairly homogeneous and non-charging. Moreover, annealing experiments indicated that TG-capped particles posses less thermal stability as compared to MPA-capped particles. It was demonstrated that beam-induced effects play a major role. However, the knowledge of the time scale for such effects gives the possibility to record photoemission spectra with fairly good signal quality and to extrapolate to zero radiation damage. Further, particles with different sizes and capping show different beam damage behaviour. The thin film preparation by electrophoresis results in significant changes in the spectrum indicating agglomeration, while the drop-deposition technique points towards spectral changes on the rim of the sample, which can be avoided by focusing the radiation to the centre of the deposited dried drop. Micro-Raman experiments carried out in collaboration with C. Dem, Dr. M. Schmitt and Prof. W. Kiefer exhibited major differences in the spectra of nanoparticles as compared to those of the capping molecule thioglycerol. For instance, the absence of the S-H vibrational modes indicates the consumption or removal of all unreacted capping molecules. There is definitely a need for further detailed investigations concerning various interesting aspects of this work. For instance, it would be of significance to extend the program calculations to more models. Also more information about the band gap opening has to be gathered in order to find out the reason for the larger electronic band gap as compared to the optical band gap. The photoemission analysis approach using a model calculation has to be extended to differently prepared nanoparticles, in particular, to address the differences in the location of the various species in the particle as a function of preparation. The efforts of XRD simulations by C. Kumpf et al. [50] may reveal significant new information about the particle size and the size distribution. It can be expected that the program calculations, if extended to more models, can prove the potential of photoelectron spectroscopy to serve as a tool for size and shape determination of nanoparticles, which is a new contribution to the investigation of nanoparticles. KW - Cadmiumsulfid KW - Nanopartikel KW - Nanopartikel KW - Photoemission KW - XRD KW - UV-VIS KW - nanoparticles KW - XPS KW - monodispersity KW - UV-VIS KW - Photoemission Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13395 ER -