TY - JOUR A1 - Rieger, Johannes A1 - Bähr, Oliver A1 - Maurer, Gabriele D. A1 - Hattingen, Elke A1 - Franz, Kea A1 - Brucker, Daniel A1 - Walenta, Stefan A1 - Kämmerer, Ulrike A1 - Coy, Johannes F. A1 - Weller, Michael A1 - Steinbach, Joachim P. T1 - ERGO: A pilot study of ketogenic diet in recurrent glioblastoma JF - International Journal of Oncology N2 - Limiting dietary carbohydrates inhibits glioma growth in preclinical models. Therefore, the ERGO trial (NCT00575146) examined feasibility of a ketogenic diet in 20 patients with recurrent glioblastoma. Patients were put on a low-carbohydrate, ketogenic diet containing plant oils. Feasibility was the primary endpoint, secondary endpoints included the percentage of patients reaching urinary ketosis, progression-free survival (PFS) and overall survival. The effects of a ketogenic diet alone or in combination with bevacizumab was also explored in an orthotopic U87MG glioblastoma model in nude mice. Three patients (15%) discontinued the diet for poor tolerability. No serious adverse events attributed to the diet were observed. Urine ketosis was achieved at least once in 12 of 13 (92%) evaluable patients. One patient achieved a minor response and two patients had stable disease after 6 weeks. Median PFS of all patients was 5 (range, 3-13) weeks, median survival from enrollment was 32 weeks. The trial allowed to continue the diet beyond progression. Six of 7 (86%) patients treated with bevacizumab and diet experienced an objective response, and median PFS on bevacizumab was 20.1 (range, 12-124) weeks, for a PFS at 6 months of 43%. In the mouse glioma model, ketogenic diet alone had no effect on median survival, but increased that of bevacizumab-treated mice from 52 to 58 days (p<0.05). In conclusion, a ketogenic diet is feasible and safe but probably has no significant clinical activity when used as single agent in recurrent glioma. Further clinical trials are necessary to clarify whether calorie restriction or the combination with other therapeutic modalities, such as radiotherapy or anti-angiogenic treatments, could enhance the efficacy of the ketogenic diet. KW - feasibility KW - glucose KW - glioma KW - metabolism KW - ketogenic diet Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121170 VL - 44 IS - 6 ER - TY - JOUR A1 - Bartmann, Catharina A1 - Janaki Raman, Sudha R. A1 - Flöter, Jessica A1 - Schulze, Almut A1 - Bahlke, Katrin A1 - Willingstorfer, Jana A1 - Strunz, Maria A1 - Wöckel, Achim A1 - Klement, Rainer J. A1 - Kapp, Michaela A1 - Djuzenova, Cholpon S. A1 - Otto, Christoph A1 - Kämmerer, Ulrike T1 - Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation JF - Cancer & Metabolism N2 - Background: Ketogenic diets (KDs) or short-term fasting are popular trends amongst supportive approaches for cancer patients. Beta-hydroxybutyrate (3-OHB) is the main physiological ketone body, whose concentration can reach plasma levels of 2–6 mM during KDs or fasting. The impact of 3-OHB on the biology of tumor cells described so far is contradictory. Therefore, we investigated the effect of a physiological concentration of 3 mM 3-OHB on metabolism, proliferation, and viability of breast cancer (BC) cells in vitro. Methods: Seven different human BC cell lines (BT20, BT474, HBL100, MCF-7, MDA-MB 231, MDA-MB 468, and T47D) were cultured in medium with 5 mM glucose in the presence of 3 mM 3-OHB at mild hypoxia (5% oxygen) or normoxia (21% oxygen). Metabolic profiling was performed by quantification of the turnover of glucose, lactate, and 3-OHB and by Seahorse metabolic flux analysis. Expression of key enzymes of ketolysis as well as the main monocarboxylic acid transporter MCT2 and the glucose-transporter GLUT1 was analyzed by RT-qPCR and Western blotting. The effect of 3-OHB on short- and long-term cell proliferation as well as chemo- and radiosensitivity were also analyzed. Results: 3-OHB significantly changed the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in BT20 cells resulting in a more oxidative energetic phenotype. MCF-7 and MDA-MB 468 cells had increased ECAR only in response to 3-OHB, while the other three cell types remained uninfluenced. All cells expressed MCT2 and GLUT1, thus being able to uptake the metabolites. The consumption of 3-OHB was not strongly linked to mRNA overexpression of key enzymes of ketolysis and did not correlate with lactate production and glucose consumption. Neither 3-OHB nor acetoacetate did interfere with proliferation. Further, 3-OHB incubation did not modify the response of the tested BC cell lines to chemotherapy or radiation. Conclusions: We found that a physiological level of 3-OHB can change the energetic profile of some BC cell lines. However, 3-OHB failed to influence different biologic processes in these cells, e.g., cell proliferation and the response to common breast cancer chemotherapy and radiotherapy. Thus, we have no evidence that 3-OHB generally influences the biology of breast cancer cells in vitro. KW - ketogenic diet KW - β-Hydroxybutyrate KW - ketone bodies KW - breast cancer KW - seahorse KW - metabolic profile KW - chemotherapy KW - ionizing radiation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175607 VL - 6 IS - 8 ER - TY - JOUR A1 - Kämmerer, Ulrike A1 - Klement, Rainer J. A1 - Joos, Fabian T. A1 - Sütterlin, Marc A1 - Reuss-Borst, Monika T1 - Low carb and ketogenic diets increase quality of life, physical performance, body composition, and metabolic health of women with breast cancer JF - Nutrients N2 - Breast cancer (BC) patients often ask for a healthy diet. Here, we investigated a healthy standard diet (SD), a low carb diet (LCD), and a ketogenic diet (KD) for BC patients during the rehabilitation phase. KOLIBRI was an open-label non-randomized one-site nutritional intervention trial, combining inpatient and outpatient phases for 20 weeks. Female BC patients (n = 152; mean age 51.7 years) could select their diet. Data collected were: Quality of life (QoL), spiroergometry, body composition, and blood parameters. In total 30, 92, and 30 patients started the KD, LCD, and SD, respectively. Of those, 20, 76, and 25 completed the final examination. Patients rated all diets as feasible in daily life. All groups enhanced QoL, body composition, and physical performance. LCD participants showed the most impressive improvement in QoL aspects. KD participants finished with a very good physical performance and muscle/fat ratio. Despite increased cholesterol levels, KD patients had the best triglyceride/high-density lipoprotein (HDL) ratio and homeostatic model assessment of insulin resistance index (HOMA-IR). Most metabolic parameters significantly improved in the LCD group. SD participants ended with remarkably low cholesterol levels but did not improve triglyceride/HDL or HOMA-IR. In conclusion, both well-defined KDs and LCDs are safe and beneficial for BC patients and can be recommended during the rehabilitation phase. KW - breast cancer KW - rehabilitation KW - ketogenic diet KW - low carb diet KW - supportive care Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234209 SN - 2072-6643 VL - 13 IS - 3 ER -