TY - JOUR A1 - Voulgari-Kokota, Anna A1 - Steffan-Dewenter, Ingolf A1 - Keller, Alexander T1 - Susceptibility of Red Mason Bee Larvae to Bacterial Threats Due to Microbiome Exchange with Imported Pollen Provisions JF - Insects N2 - Solitary bees are subject to a variety of pressures that cause severe population declines. Currently, habitat loss, temperature shifts, agrochemical exposure, and new parasites are identified as major threats. However, knowledge about detrimental bacteria is scarce, although they may disturb natural microbiomes, disturb nest environments, or harm the larvae directly. To address this gap, we investigated 12 Osmia bicornis nests with deceased larvae and 31 nests with healthy larvae from the same localities in a 16S ribosomal RNA (rRNA) gene metabarcoding study. We sampled larvae, pollen provisions, and nest material and then contrasted bacterial community composition and diversity in healthy and deceased nests. Microbiomes of pollen provisions and larvae showed similarities for healthy larvae, whilst this was not the case for deceased individuals. We identified three bacterial taxa assigned to Paenibacillus sp. (closely related to P. pabuli/amylolyticus/xylanexedens), Sporosarcina sp., and Bacillus sp. as indicative for bacterial communities of deceased larvae, as well as Lactobacillus for corresponding pollen provisions. Furthermore, we performed a provisioning experiment, where we fed larvae with untreated and sterilized pollens, as well as sterilized pollens inoculated with a Bacillus sp. isolate from a deceased larva. Untreated larval microbiomes were consistent with that of the pollen provided. Sterilized pollen alone did not lead to acute mortality, while no microbiome was recoverable from the larvae. In the inoculation treatment, we observed that larval microbiomes were dominated by the seeded bacterium, which resulted in enhanced mortality. These results support that larval microbiomes are strongly determined by the pollen provisions. Further, they underline the need for further investigation of the impact of detrimental bacterial acquired via pollens and potential buffering by a diverse pollen provision microbiome in solitary bees. KW - Osmia bicornis KW - solitary bee KW - bacterial transmission KW - microbiome KW - pollen provisions KW - pathogen KW - secondary invader KW - Paenibacillus KW - Bacillus KW - Sporosarcina Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207948 SN - 2075-4450 VL - 11 IS - 6 ER - TY - JOUR A1 - Mayr, Antonia V. A1 - Keller, Alexander A1 - Peters, Marcell K. A1 - Grimmer, Gudrun A1 - Krischke, Beate A1 - Geyer, Mareen A1 - Schmitt, Thomas A1 - Steffan‐Dewenter, Ingolf T1 - Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient JF - Ecology and Evolution N2 - Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low‐quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro. KW - COI KW - cuticular chemistry KW - elevational gradient KW - Halictidae KW - microbiome metabarcoding KW - pollen metabarcoding Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238853 VL - 11 IS - 12 SP - 7700 EP - 7712 ER - TY - JOUR A1 - Değirmenci, Laura A1 - Rogé Ferreira, Fabio Luiz A1 - Vukosavljevic, Adrian A1 - Heindl, Cornelia A1 - Keller, Alexander A1 - Geiger, Dietmar A1 - Scheiner, Ricarda T1 - Sugar perception in honeybees JF - Frontiers in Physiology N2 - Honeybees (Apis mellifera) need their fine sense of taste to evaluate nectar and pollen sources. Gustatory receptors (Grs) translate taste signals into electrical responses. In vivo experiments have demonstrated collective responses of the whole Gr-set. We here disentangle the contributions of all three honeybee sugar receptors (AmGr1-3), combining CRISPR/Cas9 mediated genetic knock-out, electrophysiology and behaviour. We show an expanded sugar spectrum of the AmGr1 receptor. Mutants lacking AmGr1 have a reduced response to sucrose and glucose but not to fructose. AmGr2 solely acts as co-receptor of AmGr1 but not of AmGr3, as we show by electrophysiology and using bimolecular fluorescence complementation. Our results show for the first time that AmGr2 is indeed a functional receptor on its own. Intriguingly, AmGr2 mutants still display a wildtype-like sugar taste. AmGr3 is a specific fructose receptor and is not modulated by a co-receptor. Eliminating AmGr3 while preserving AmGr1 and AmGr2 abolishes the perception of fructose but not of sucrose. Our comprehensive study on the functions of AmGr1, AmGr2 and AmGr3 in honeybees is the first to combine investigations on sugar perception at the receptor level and simultaneously in vivo. We show that honeybees rely on two gustatory receptors to sense all relevant sugars. KW - AmGr1 KW - AmGr2 KW - AmGr3 KW - sugar responsiveness KW - proboscis extension response (PER) KW - gustatory receptors (Grs) KW - honeybee taste perception Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302284 SN - 1664-042X VL - 13 ER - TY - JOUR A1 - König, Sebastian A1 - Krauss, Jochen A1 - Keller, Alexander A1 - Bofinger, Lukas A1 - Steffan‐Dewenter, Ingolf T1 - Phylogenetic relatedness of food plants reveals highest insect herbivore specialization at intermediate temperatures along a broad climatic gradient JF - Global Change Biology N2 - The composition and richness of herbivore and plant assemblages change along climatic gradients, but knowledge about associated shifts in specialization is scarce and lacks controlling for the abundance and phylogeny of interaction partners. Thus, we aimed to test whether the specialization of phytophagous insects in insect‐plant interaction networks decreases toward cold habitats as predicted by the ‘altitude niche‐breadth hypothesis’ to forecast possible consequences of interaction rewiring under climate change. We used a non‐invasive, standardized metabarcoding approach to reconstruct dietary relationships of Orthoptera species as a major insect herbivore taxon along a broad temperature gradient (~12°C) in Southern Germany. Based on Orthoptera surveys, feeding observations, collection of fecal pellets from >3,000 individuals of 54 species, and parallel vegetation surveys on 41 grassland sites, we quantified plant resource availability and its use by herbivores. Herbivore assemblages were richer in species and individuals at sites with high summer temperatures, while plant richness peaked at intermediate temperatures. Corresponding interaction networks were most specialized in warm habitats. Considering phylogenetic relationships of plant resources, however, the specialization pattern was not linear but peaked at intermediate temperatures, mediated by herbivores feeding on a narrow range of phylogenetically related resources. Our study provides empirical evidence of resource specialization of insect herbivores along a climatic gradient, demonstrating that resource phylogeny, availability, and temperature interactively shape the specialization of herbivore assemblages. Instead of low specialization levels only in cold, harsh habitats, our results suggest increased generalist feeding due to intraspecific changes and compositional differences at both ends of the microclimatic gradient. We conclude that this nonlinear change of phylogeny‐based resource specialization questions predictions derived from the ‘altitude‐niche breadth hypothesis’ and highlights the currently limited understanding of how plant‐herbivore interactions will change under future climatic conditions. KW - Alps KW - diet breadth KW - distance‐based specialization index KW - herbivores KW - interaction networks KW - metabarcoding KW - microclimate KW - Orthoptera KW - plant richness KW - temperature gradient Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276441 VL - 28 IS - 13 SP - 4027 EP - 4040 ER - TY - JOUR A1 - Faist, Hanna A1 - Ankenbrand, Markus J. A1 - Sickel, Wiebke A1 - Hentschel, Ute A1 - Keller, Alexander A1 - Deeken, Rosalia T1 - Opportunistic bacteria of grapevine crown galls are equipped with the genomic repertoire for opine utilization JF - Genome Biology and Evolution N2 - Young grapevines (Vitis vinifera) suffer and eventually can die from the crown gall disease caused by the plant pathogen Allorhizobium vitis (Rhizobiaceae). Virulent members of A. vitis harbor a tumor-inducing plasmid and induce formation of crown galls due to the oncogenes encoded on the transfer DNA. The expression of oncogenes in transformed host cells induces unregulated cell proliferation and metabolic and physiological changes. The crown gall produces opines uncommon to plants, which provide an important nutrient source for A. vitis harboring opine catabolism enzymes. Crown galls host a distinct bacterial community, and the mechanisms establishing a crown gall–specific bacterial community are currently unknown. Thus, we were interested in whether genes homologous to those of the tumor-inducing plasmid coexist in the genomes of the microbial species coexisting in crown galls. We isolated 8 bacterial strains from grapevine crown galls, sequenced their genomes, and tested their virulence and opine utilization ability in bioassays. In addition, the 8 genome sequences were compared with 34 published bacterial genomes, including closely related plant-associated bacteria not from crown galls. Homologous genes for virulence and opine anabolism were only present in the virulent Rhizobiaceae. In contrast, homologs of the opine catabolism genes were present in all strains including the nonvirulent members of the Rhizobiaceae and non-Rhizobiaceae. Gene neighborhood and sequence identity of the opine degradation cluster of virulent and nonvirulent strains together with the results of the opine utilization assay support the important role of opine utilization for cocolonization in crown galls, thereby shaping the crown gall community. KW - Vitis vinifera KW - bacterial community KW - Agrobacterium KW - Allorhizobium vitis KW - Ti plasmids KW - de novo sequenced genomes Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350172 VL - 15 IS - 12 ER -