TY - JOUR A1 - Herrmann, Ken A1 - Buck, Andreas K. A1 - Schuster, Tibor A1 - Abbrederis, Kathrin A1 - Blümel, Christina A1 - Santi, Ivan A1 - Rudelius, Martina A1 - Wester, Hans-Jürgen A1 - Peschel, Christian A1 - Schwaiger, Markus A1 - Dechow, Tobias A1 - Keller, Ulrich T1 - Week one FLT-PET response predicts complete remission to R-CHOP and survival in DLBCL JF - Oncotarget N2 - Despite improved survival in the Rituximab (R) era, a considerable number of patients with diffuse large B-cell lymphoma (DLBCL) ultimately die from the disease. Functional imaging using [18F]fluorodeoxyglucose-PET is suggested for assessment of residual viable tumor very early during treatment but is compromised by non-specific tracer retention in inflammatory lesions. The PET tracer [18F]fluorodeoxythymidine (FLT) as surrogate marker of tumor proliferation may overcome this limitation. We present results of a prospective clinical study testing FLT-PET as superior and early predictor of response to chemotherapy and outcome in DLBCL. 54 patients underwent FLT-PET prior to and one week after the start of R-CHOP chemotherapy. Repetitive FLT-PET imaging was readily implemented into the diagnostic work-up. Our data demonstrate that the reduction of FLT standard uptake valuemean (SUVmean) and SUVmax one week after chemotherapy was significantly higher in patients achieving complete response (CR, n=48; non-CR, n=6; p<0.006). Martingale-residual and Cox proportional hazard analyses showed a significant monotonous decrease of mortality risk with increasing change in SUV. Consistent with these results, early FLT-PET response showed relevant discriminative ability in predicting CR. In conclusion, very early FLT-PET in the course of R-CHOP chemotherapy is feasible and enables identification of patients at risk for treatment failure. KW - [18F]Fluorodeoxythymidine KW - FLT-PET KW - positron emission tomography KW - DLBCL KW - lymphoma Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120659 SN - 1949-2553 VL - 5 IS - 12 ER - TY - JOUR A1 - Engel, Katharina A1 - Rudelius, Martina A1 - Slawska, Jolanta A1 - Jacobs, Laura A1 - Abhari, Behnaz Ahangarian A1 - Altmann, Bettina A1 - Kurutz, Julia A1 - Rathakrishnan, Abirami A1 - Fernández-Sáiz, Vanesa A1 - Brunner, Andrä A1 - Targosz, Bianca-Sabrina A1 - Loewecke, Felicia A1 - Gloeckner, Christian Johannes A1 - Ueffing, Marius A1 - Fulda, Simone A1 - Pfreundschuh, Michael A1 - Trümper, Lorenz A1 - Klapper, Wolfram A1 - Keller, Ulrich A1 - Jost, Philipp J. A1 - Rosenwald, Andreas A1 - Peschel, Christian A1 - Bassermann, Florian T1 - USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma JF - EMBO Molecular Medicine N2 - The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC‐induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X‐linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B‐cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event‐free survival in patients treated with spindle poison‐containing chemotherapy. Accordingly, aggressive B‐cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eμ‐Myc lymphoma model. Together, we specify the USP9X–XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B‐cell lymphoma. KW - B‐cell lymphoma KW - mitosis KW - ubiquitin KW - USP9X KW - XIAP Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165016 VL - 8 ER - TY - JOUR A1 - Philipp-Abbrederis, Kathrin A1 - Herrmann, Ken A1 - Knop, Stefan A1 - Schottelius, Margret A1 - Eiber, Matthias A1 - Lückerath, Katharina A1 - Pietschmann, Elke A1 - Habringer, Stefan A1 - Gerngroß, Carlos A1 - Franke, Katharina A1 - Rudelius, Martina A1 - Schirbel, Andreas A1 - Lapa, Constantin A1 - Schwamborn, Kristina A1 - Steidle, Sabine A1 - Hartmann, Elena A1 - Rosenwald, Andreas A1 - Kropf, Saskia A1 - Beer, Ambros J A1 - Peschel, Christian A1 - Einsele, Hermann A1 - Buck, Andreas K A1 - Schwaiger, Markus A1 - Götze, Katharina A1 - Wester, Hans-Jürgen A1 - Keller, Ulrich T1 - In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma JF - EMBO Molecular Medicine N2 - CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases. KW - FDG PET/CT KW - cells KW - CXCR4/SDF-1 KW - CXCR4 KW - multiple myeloma KW - positron emission tomography KW - chemokine receptor KW - in vivo imaging KW - malignancies KW - involvement KW - microenvironment KW - survival KW - cancer KW - autologous transplantation KW - bone disease Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148738 VL - 7 IS - 4 ER - TY - JOUR A1 - Franke, Katharina A1 - Vilne, Baiba A1 - da Costa, Olivia Prazeres A1 - Rudelius, Martina A1 - Peschel, Christian A1 - Oostendorp, Robert A. J. A1 - Keller, Ulrich T1 - In vivo hematopoietic Myc activation directs a transcriptional signature in endothelial cells within the bone marrow microenvironment JF - Oncotarget N2 - Cancer pathogenesis involves tumor-intrinsic genomic aberrations and tumor-cell extrinsic mechanisms such as failure of immunosurveillance and structural and functional changes in the microenvironment. Using Myc as a model oncogene we established a conditional mouse bone marrow transduction/transplantation model where the conditional activation of the oncoprotein Myc expressed in the hematopoietic system could be assessed for influencing the host microenvironment. Constitutive ectopic expression of Myc resulted in rapid onset of a lethal myeloproliferative disorder with a median survival of 21 days. In contrast, brief 4-day Myc activation by means of the estrogen receptor (ER) agonist tamoxifen did not result in gross changes in the percentage/frequency of hematopoietic lineages or hematopoietic stem/progenitor cell (HSPC) subsets, nor did Myc activation significantly change the composition of the non-hematopoietic microenvironment defined by phenotyping for CD31, ALCAM, and Sca-1 expression. Transcriptome analysis of endothelial CD45-Ter119-cells from tamoxifen-treated MycER bone marrow graft recipients revealed a gene expression signature characterized by specific changes in the Rho subfamily pathway members, in the transcription-translation-machinery and in angiogenesis. In conclusion, intra-hematopoietic Myc activation results in significant transcriptome alterations that can be attributed to oncogene-induced signals from hematopoietic cells towards the microenvironment, e. g. endothelial cells, supporting the idea that even pre-leukemic HSPC highjack components of the niche which then could protect and support the cancer-initiating population. KW - stem-cells KW - mutations KW - C-Myc KW - Rho-GTPases KW - niche KW - leukemia KW - target KW - growth KW - cycle KW - apoptosis, Myc KW - microenvironment KW - endothelial cells Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145844 VL - 6 IS - 26 SP - 21827 EP - 21839 ER - TY - JOUR A1 - Wester, Hans Jürgen A1 - Keller, Ulrich A1 - Schottelius, Margret A1 - Beer, Ambros A1 - Philipp-Abbrederis, Kathrin A1 - Hoffmann, Frauke A1 - Šimeček, Jakub A1 - Gerngross, Carlos A1 - Lassmann, Michael A1 - Herrmann, Ken A1 - Pellegata, Natalia A1 - Rudelius, Martina A1 - Kessler, Horst A1 - Schwaiger, Markus T1 - Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging JF - Theranostics N2 - Chemokine ligand-receptor interactions play a pivotal role in cell attraction and cellular trafficking, both in normal tissue homeostasis and in disease. In cancer, chemokine receptor-4 (CXCR4) expression is an adverse prognostic factor. Early clinical studies suggest that targeting CXCR4 with suitable high-affinity antagonists might be a novel means for therapy. In addition to the preclinical evaluation of [\(^{68}\)Ga]Pentixafor in mice bearing human lymphoma xenografts as an exemplary CXCR4-expressing tumor entity, we report on the first clinical applications of [\(^{68}\)Ga]Pentixafor-Positron Emission Tomography as a powerful method for CXCR4 imaging in cancer patients. [\(^{68}\)Ga]Pentixafor binds with high affinity and selectivity to human CXCR4 and exhibits a favorable dosimetry. [\(^{68}\)Ga]Pentixafor-PET provides images with excellent specificity and contrast. This non-invasive imaging technology for quantitative assessment of CXCR4 expression allows to further elucidate the role of CXCR4/CXCL12 ligand interaction in the pathogenesis and treatment of cancer, cardiovascular diseases and autoimmune and inflammatory disorders. KW - acute myeloid leukemia KW - prognostic value KW - therapeutic target KW - chemokine receptor KW - CXCR4 KW - lymphoma KW - in vivo imaging KW - positron emission tomography Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144537 VL - 5 IS - 6 ER -