TY - JOUR A1 - Wester, Hans Jürgen A1 - Keller, Ulrich A1 - Schottelius, Margret A1 - Beer, Ambros A1 - Philipp-Abbrederis, Kathrin A1 - Hoffmann, Frauke A1 - Šimeček, Jakub A1 - Gerngross, Carlos A1 - Lassmann, Michael A1 - Herrmann, Ken A1 - Pellegata, Natalia A1 - Rudelius, Martina A1 - Kessler, Horst A1 - Schwaiger, Markus T1 - Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging JF - Theranostics N2 - Chemokine ligand-receptor interactions play a pivotal role in cell attraction and cellular trafficking, both in normal tissue homeostasis and in disease. In cancer, chemokine receptor-4 (CXCR4) expression is an adverse prognostic factor. Early clinical studies suggest that targeting CXCR4 with suitable high-affinity antagonists might be a novel means for therapy. In addition to the preclinical evaluation of [\(^{68}\)Ga]Pentixafor in mice bearing human lymphoma xenografts as an exemplary CXCR4-expressing tumor entity, we report on the first clinical applications of [\(^{68}\)Ga]Pentixafor-Positron Emission Tomography as a powerful method for CXCR4 imaging in cancer patients. [\(^{68}\)Ga]Pentixafor binds with high affinity and selectivity to human CXCR4 and exhibits a favorable dosimetry. [\(^{68}\)Ga]Pentixafor-PET provides images with excellent specificity and contrast. This non-invasive imaging technology for quantitative assessment of CXCR4 expression allows to further elucidate the role of CXCR4/CXCL12 ligand interaction in the pathogenesis and treatment of cancer, cardiovascular diseases and autoimmune and inflammatory disorders. KW - acute myeloid leukemia KW - prognostic value KW - therapeutic target KW - chemokine receptor KW - CXCR4 KW - lymphoma KW - in vivo imaging KW - positron emission tomography Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144537 VL - 5 IS - 6 ER - TY - JOUR A1 - Philipp-Abbrederis, Kathrin A1 - Herrmann, Ken A1 - Knop, Stefan A1 - Schottelius, Margret A1 - Eiber, Matthias A1 - Lückerath, Katharina A1 - Pietschmann, Elke A1 - Habringer, Stefan A1 - Gerngroß, Carlos A1 - Franke, Katharina A1 - Rudelius, Martina A1 - Schirbel, Andreas A1 - Lapa, Constantin A1 - Schwamborn, Kristina A1 - Steidle, Sabine A1 - Hartmann, Elena A1 - Rosenwald, Andreas A1 - Kropf, Saskia A1 - Beer, Ambros J A1 - Peschel, Christian A1 - Einsele, Hermann A1 - Buck, Andreas K A1 - Schwaiger, Markus A1 - Götze, Katharina A1 - Wester, Hans-Jürgen A1 - Keller, Ulrich T1 - In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma JF - EMBO Molecular Medicine N2 - CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases. KW - FDG PET/CT KW - cells KW - CXCR4/SDF-1 KW - CXCR4 KW - multiple myeloma KW - positron emission tomography KW - chemokine receptor KW - in vivo imaging KW - malignancies KW - involvement KW - microenvironment KW - survival KW - cancer KW - autologous transplantation KW - bone disease Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148738 VL - 7 IS - 4 ER - TY - JOUR A1 - Engel, Katharina A1 - Rudelius, Martina A1 - Slawska, Jolanta A1 - Jacobs, Laura A1 - Abhari, Behnaz Ahangarian A1 - Altmann, Bettina A1 - Kurutz, Julia A1 - Rathakrishnan, Abirami A1 - Fernández-Sáiz, Vanesa A1 - Brunner, Andrä A1 - Targosz, Bianca-Sabrina A1 - Loewecke, Felicia A1 - Gloeckner, Christian Johannes A1 - Ueffing, Marius A1 - Fulda, Simone A1 - Pfreundschuh, Michael A1 - Trümper, Lorenz A1 - Klapper, Wolfram A1 - Keller, Ulrich A1 - Jost, Philipp J. A1 - Rosenwald, Andreas A1 - Peschel, Christian A1 - Bassermann, Florian T1 - USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma JF - EMBO Molecular Medicine N2 - The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC‐induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X‐linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B‐cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event‐free survival in patients treated with spindle poison‐containing chemotherapy. Accordingly, aggressive B‐cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eμ‐Myc lymphoma model. Together, we specify the USP9X–XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B‐cell lymphoma. KW - B‐cell lymphoma KW - mitosis KW - ubiquitin KW - USP9X KW - XIAP Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165016 VL - 8 ER -