TY - JOUR A1 - Koeniger, Tobias A1 - Bell, Luisa A1 - Mifka, Anika A1 - Enders, Michael A1 - Hautmann, Valentin A1 - Mekala, Subba Rao A1 - Kirchner, Philipp A1 - Ekici, Arif B. A1 - Schulz, Christian A1 - Wörsdörfer, Philipp A1 - Mencl, Stine A1 - Kleinschnitz, Christoph A1 - Ergün, Süleyman A1 - Kuerten, Stefanie T1 - Bone marrow‐derived myeloid progenitors in the leptomeninges of adult mice JF - Stem Cells N2 - Although the bone marrow contains most hematopoietic activity during adulthood, hematopoietic stem and progenitor cells can be recovered from various extramedullary sites. Cells with hematopoietic progenitor properties have even been reported in the adult brain under steady‐state conditions, but their nature and localization remain insufficiently defined. Here, we describe a heterogeneous population of myeloid progenitors in the leptomeninges of adult C57BL/6 mice. This cell pool included common myeloid, granulocyte/macrophage, and megakaryocyte/erythrocyte progenitors. Accordingly, it gave rise to all major myelo‐erythroid lineages in clonogenic culture assays. Brain‐associated progenitors persisted after tissue perfusion and were partially inaccessible to intravenous antibodies, suggesting their localization behind continuous blood vessel endothelium such as the blood‐arachnoid barrier. Flt3\(^{Cre}\) lineage tracing and bone marrow transplantation showed that the precursors were derived from adult hematopoietic stem cells and were most likely continuously replaced via cell trafficking. Importantly, their occurrence was tied to the immunologic state of the central nervous system (CNS) and was diminished in the context of neuroinflammation and ischemic stroke. Our findings confirm the presence of myeloid progenitors at the meningeal border of the brain and lay the foundation to unravel their possible functions in CNS surveillance and local immune cell production. KW - hematopoietic KW - meninges KW - mouse KW - myeloid KW - progenitor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224452 VL - 39 IS - 2 SP - 227 EP - 239 ER - TY - JOUR A1 - Simon, Micha A1 - Ipek, Rojda A1 - Homola, György A. A1 - Rovituso, Damiano M. A1 - Schampel, Andrea A1 - Kleinschnitz, Christoph A1 - Kuerten, Stefanie T1 - Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis JF - Journal of Neuroinflammation N2 - Background: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) for which several new treatment options were recently introduced. Among them is the monoclonal anti-CD52 antibody alemtuzumab that depletes mainly B cells and T cells in the immune periphery. Considering the ongoing controversy about the involvement of B cells and in particular the formation of B cell aggregates in the brains of progressive MS patients, an in-depth understanding of the effects of anti-CD52 antibody treatment on the B cell compartment in the CNS itself is desirable. Methods: We used myelin basic protein (MBP)-proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 (B6) mice as B cell-dependent model of MS. Mice were treated intraperitoneally either at the peak of EAE or at 60 days after onset with 200 μg murine anti-CD52 vs. IgG2a isotype control antibody for five consecutive days. Disease was subsequently monitored for 10 days. The antigen-specific B cell/antibody response was measured by ELISPOT and ELISA. Effects on CNS infiltration and B cell aggregation were determined by immunohistochemistry. Neurodegeneration was evaluated by Luxol Fast Blue, SMI-32, and Olig2/APC staining as well as by electron microscopy and phosphorylated heavy neurofilament serum ELISA. Results: Treatment with anti-CD52 antibody attenuated EAE only when administered at the peak of disease. While there was no effect on the production of MP4-specific IgG, the treatment almost completely depleted CNS infiltrates and B cell aggregates even when given as late as 60 days after onset. On the ultrastructural level, we observed significantly less axonal damage in the spinal cord and cerebellum in chronic EAE after anti-CD52 treatment. Conclusion: Anti-CD52 treatment abrogated B cell infiltration and disrupted existing B cell aggregates in the CNS. KW - Alemtuzumab KW - B cells KW - CD52 KW - CNS KW - EAE KW - MS Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176120 VL - 15 IS - 225 ER - TY - JOUR A1 - Rolfes, Leoni A1 - Ruck, Tobias A1 - David, Christina A1 - Mencl, Stine A1 - Bock, Stefanie A1 - Schmidt, Mariella A1 - Strecker, Jan-Kolja A1 - Pfeuffer, Steffen A1 - Mecklenbeck, Andreas-Schulte A1 - Gross, Catharina A1 - Gliem, Michael A1 - Minnerup, Jens A1 - Schuhmann, Michael K. A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Natural Killer Cells Are Present in Rag1\(^{−/−}\) Mice and Promote Tissue Damage During the Acute Phase of Ischemic Stroke JF - Translational Stroke Research N2 - Rag1\(^{−/−}\) mice, lacking functional B and T cells, have been extensively used as an adoptive transfer model to evaluate neuroinflammation in stroke research. However, it remains unknown whether natural killer (NK) cell development and functions are altered in Rag1\(^{−/−}\) mice as well. This connection has been rarely discussed in previous studies but might have important implications for data interpretation. In contrast, the NOD-Rag1\(^{null}\)IL2rg\(^{null}\) (NRG) mouse model is devoid of NK cells and might therefore eliminate this potential shortcoming. Here, we compare immune-cell frequencies as well as phenotype and effector functions of NK cells in Rag1\(^{−/−}\) and wildtype (WT) mice using flow cytometry and functional in vitro assays. Further, we investigate the effect of Rag1\(^{−/−}\) NK cells in the transient middle cerebral artery occlusion (tMCAO) model using antibody-mediated depletion of NK cells and adoptive transfer to NRG mice in vivo. NK cells in Rag1\(^{−/−}\) were comparable in number and function to those in WT mice. Rag1\(^{−/−}\) mice treated with an anti-NK1.1 antibody developed significantly smaller infarctions and improved behavioral scores. Correspondingly, NRG mice supplemented with NK cells were more susceptible to tMCAO, developing infarctions and neurological deficits similar to Rag1−/− controls. Our results indicate that NK cells from Rag1−/− mice are fully functional and should therefore be considered in the interpretation of immune-cell transfer models in experimental stroke. Fortunately, we identified the NRG mice, as a potentially better-suited transfer model to characterize individual cell subset-mediated neuroinflammation in stroke. KW - infarction KW - middle cerebral artery occlusion KW - animal model KW - inflammation KW - natural killer cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-308924 SN - 1868-4483 SN - 1868-601X VL - 13 IS - 1 ER - TY - JOUR A1 - Göbel, Kerstin A1 - Pankratz, Susann A1 - Asaridou, Chloi-Magdalini A1 - Herrmann, Alexander M. A1 - Bittner, Stefan A1 - Merker, Monika A1 - Ruck, Tobias A1 - Glumm, Sarah A1 - Langhauser, Friederike A1 - Kraft, Peter A1 - Krug, Thorsten F. A1 - Breuer, Johanna A1 - Herold, Martin A1 - Gross, Catharina C. A1 - Beckmann, Denise A1 - Korb-Pap, Adelheid A1 - Schuhmann, Michael K. A1 - Kuerten, Stefanie A1 - Mitroulis, Ioannis A1 - Ruppert, Clemens A1 - Nolte, Marc W. A1 - Panousis, Con A1 - Klotz, Luisa A1 - Kehrel, Beate A1 - Korn, Thomas A1 - Langer, Harald F. A1 - Pap, Thomas A1 - Nieswandt, Bernhard A1 - Wiendl, Heinz A1 - Chavakis, Triantafyllos A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells JF - Nature Communications N2 - Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. KW - blood coagulation KW - factor XII KW - neuroinflammation KW - dendric cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165503 VL - 7 IS - 11626 ER - TY - JOUR A1 - Hopp, Sarah A1 - Nolte, Marc W. A1 - Stetter, Christian A1 - Kleinschnitz, Christoph A1 - Sirén, Anna-Leena A1 - Albert-Weissenberger, Christiane T1 - Alleviation of secondary brain injury, posttraumatic inflammation, and brain edema formation by inhibition of factor XIIa JF - Journal of Neuroinflammation N2 - Background: Traumatic brain injury (TBI) is a devastating neurological condition and a frequent cause of permanent disability. Posttraumatic inflammation and brain edema formation, two pathological key events contributing to secondary brain injury, are mediated by the contact-kinin system. Activation of this pathway in the plasma is triggered by activated factor XII. Hence, we set out to study in detail the influence of activated factor XII on the abovementioned pathophysiological features of TBI. Methods: Using a cortical cryogenic lesion model in mice, we investigated the impact of genetic deficiency of factor XII and inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused Infestin-4 on the release of bradykinin, the brain lesion size, and contact-kinin system-dependent pathological events. We determined protein levels of bradykinin, intracellular adhesion molecule-1, CC-chemokine ligand 2, and interleukin-1β by enzyme-linked immunosorbent assays and mRNA levels of genes related to inflammation by quantitative real-time PCR. Brain lesion size was determined by tetrazolium chloride staining. Furthermore, protein levels of the tight junction protein occludin, integrity of the blood-brain barrier, and brain water content were assessed by Western blot analysis, extravasated Evans Blue dye, and the wet weight-dry weight method, respectively. Infiltration of neutrophils and microglia/activated macrophages into the injured brain lesions was quantified by immunohistological stainings. Results: We show that both genetic deficiency of factor XII and inhibition of activated factor XII in mice diminish brain injury-induced bradykinin release by the contact-kinin system and minimize brain lesion size, blood-brain barrier leakage, brain edema formation, and inflammation in our brain injury model. Conclusions: Stimulation of bradykinin release by activated factor XII probably plays a prominent role in expanding secondary brain damage by promoting brain edema formation and inflammation. Pharmacological blocking of activated factor XII could be a useful therapeutic principle in the treatment of TBI-associated pathologic processes by alleviating posttraumatic inflammation and brain edema formation. KW - factor XII KW - focal brain lesion KW - brain edema Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157490 VL - 14 IS - 39 ER - TY - JOUR A1 - Schanbacher, Constanze A1 - Bieber, Michael A1 - Reinders, Yvonne A1 - Cherpokova, Deya A1 - Teichert, Christina A1 - Nieswandt, Bernhard A1 - Sickmann, Albert A1 - Kleinschnitz, Christoph A1 - Langhauser, Friederike A1 - Lorenz, Kristina T1 - ERK1/2 activity is critical for the outcome of ischemic stroke JF - International Journal of Molecular Sciences N2 - Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood–brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke. KW - ERK1/2 KW - tMCAO KW - ischemic stroke KW - RKIP Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283991 SN - 1422-0067 VL - 23 IS - 2 ER - TY - JOUR A1 - Kraft, Peter A1 - Schuhmann, Michael K. A1 - Garz, Cornelia A1 - Jandke, Solveig A1 - Urlaub, Daniela A1 - Mencl, Stine A1 - Zernecke, Alma A1 - Heinze, Hans-Jochen A1 - Carare, Roxana O. A1 - Kleinschnitz, Christoph A1 - Schreiber, Stefanie T1 - Hypercholesterolemia induced cerebral small vessel disease JF - PLoS ONE N2 - Background While hypercholesterolemia plays a causative role for the development of ischemic stroke in large vessels, its significance for cerebral small vessel disease (CSVD) remains unclear. We thus aimed to understand the detailed relationship between hypercholesterolemia and CSVD using the well described Ldlr\(^{−/-}\) mouse model. Methods We used Ldlr\(^{−/-}\) mice (n = 16) and wild-type (WT) mice (n = 15) at the age of 6 and 12 months. Ldlr\(^{−/-}\) mice develop high plasma cholesterol levels following a high fat diet. We analyzed cerebral capillaries and arterioles for intravascular erythrocyte accumulations, thrombotic vessel occlusions, blood-brain barrier (BBB) dysfunction and microbleeds. Results We found a significant increase in the number of erythrocyte stases in 6 months old Ldlr\(^{−/-}\) mice compared to all other groups (P < 0.05). Ldlr\(^{−/-}\) animals aged 12 months showed the highest number of thrombotic occlusions while in WT animals hardly any occlusions could be observed (P < 0.001). Compared to WT mice, Ldlr\(^{−/-}\) mice did not display significant gray matter BBB breakdown. Microhemorrhages were observed in one Ldlr\(^{−/-}\) mouse that was 6 months old. Results did not differ when considering subcortical and cortical regions. Conclusions In Ldlr\(^{−/-}\) mice, hypercholesterolemia is related to a thrombotic CSVD phenotype, which is different from hypertension-related CSVD that associates with a hemorrhagic CSVD phenotype. Our data demonstrate a relationship between hypercholesterolemia and the development of CSVD. Ldlr\(^{−/-}\) mice appear to be an adequate animal model for research into CSVD. KW - hypercholesterolemia KW - cerebral small vessel disease KW - mouse model KW - histology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170493 VL - 12 IS - 8 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Gunreben, Ignaz A1 - Kleinschnitz, Christoph A1 - Kraft, Peter T1 - Immunohistochemical Analysis of Cerebral Thrombi Retrieved by Mechanical Thrombectomy from Patients with Acute Ischemic Stroke JF - International Journal of Molecular Sciences N2 - Mechanical thrombectomy is a novel treatment option for patients with acute ischemic stroke (AIS). Only a few studies have previously suggested strategies to categorize retrieved clots according to their histologic composition. However, these reports did not analyze potential biomarkers that are of importance in stroke-related inflammation. We therefore histopathologically investigated 37 intracerebral thrombi mechanically retrieved from patients with AIS, and focused on the composition of immune cells and platelets. We also conducted correlation analyses of distinctive morphologic patterns (erythrocytic, serpentine, layered, red, white, mixed appearance) with clinical parameters. Most T cells and monocytes were detected in erythrocytic and red clots, in which the distribution of these cells was random. In contrast, von Willebrand factor (vWF)-positive areas co-localized with regions of fibrin and collagen. While clots with huge amounts of vWF seem to be associated with a high National Institute of Health Stroke Scale score at admission, histologic findings could not predict the clinical outcome at discharge. In summary, we provide the first histologic description of mechanically retrieved intracerebral thrombi regarding biomarkers relevant for inflammation in ischemic stroke. KW - thrombus formation KW - immune cells KW - lymphocytes KW - mechanical thrombectomy KW - ischemic stroke KW - inflammation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166206 VL - 17 IS - 3 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Guthmann, Josua A1 - Stoll, Guido A1 - Nieswandt, Bernhard A1 - Kraft, Peter A1 - Kleinschnitz, Christoph T1 - Blocking of platelet glycoprotein receptor Ib reduces “thrombo-inflammation” in mice with acute ischemic stroke JF - Journal of Neuroinflammation N2 - Background: Ischemic stroke causes a strong inflammatory response that includes T cells, monocytes/macrophages, and neutrophils. Interaction of these immune cells with platelets and endothelial cells facilitates microvascular dysfunction and leads to secondary infarct growth. We recently showed that blocking of platelet glycoprotein (GP) receptor Ib improves stroke outcome without increasing the risk of intracerebral hemorrhage. Until now, it has been unclear whether GPIb only mediates thrombus formation or also contributes to the pathophysiology of local inflammation. Methods: Focal cerebral ischemia was induced in C57BL/6 mice by a 60-min transient middle cerebral artery occlusion (tMCAO). Animals were treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab). Rat immunoglobulin G (IgG) Fab was used as control treatment. Stroke outcome, including infarct size and functional deficits as well as the local inflammatory response, was assessed on day 1 after tMCAO. Results: Blocking of GPIb reduced stroke size and improved functional outcome on day 1 after tMCAO without increasing the risk of intracerebral hemorrhage. As expected, disruption of GPIb-mediated pathways in platelets significantly reduced thrombus burden in the cerebral microvasculature. In addition, inhibition of GPIb limited the local inflammatory response in the ischemic brain as indicated by lower numbers of infiltrating T cells and macrophages and lower expression levels of inflammatory cytokines compared with rat IgG Fab-treated controls. Conclusion: In acute ischemic stroke, thrombus formation and inflammation are closely intertwined (“thrombo-inflammation”). Blocking of platelet GPIb can ameliorate thrombo-inflammation. KW - ischemic stroke KW - occlusion KW - transient middle cerebral artery KW - glycoprotein receptor Ib KW - thrombo-inflammation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157582 VL - 14 IS - 18 ER - TY - JOUR A1 - Langhauser, Friederike A1 - Casas, Ana I. A1 - Dao, Vu-Thao-Vi A1 - Guney, Emre A1 - Menche, Jörg A1 - Geuss, Eva A1 - Kleikers, Pamela W. M. A1 - López, Manuela G. A1 - Barabási, Albert-L. A1 - Kleinschnitz, Christoph A1 - Schmidt, Harald H. H. W. T1 - A diseasome cluster-based drug repurposing of soluble guanylate cyclase activators from smooth muscle relaxation to direct neuroprotection JF - npj Systems Biology and Applications N2 - Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease–disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. Here, we investigate a high prevalence unmet medical need cluster of disease phenotypes linked to cyclic GMP. Hitherto, the central cGMP-forming enzyme, soluble guanylate cyclase (sGC), has been targeted pharmacologically exclusively for smooth muscle modulation in cardiology and pulmonology. Here, we examine the disease associations of sGC in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Specifically, our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy. KW - neurology KW - pharmacology KW - systems biology Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236381 VL - 4 ER -