TY - JOUR A1 - Hohnmann, Christopher A1 - Milles, Bianca A1 - Schinke, Michael A1 - Schroeter, Michael A1 - Ulzheimer, Jochen A1 - Kraft, Peter A1 - Kleinschnitz, Christoph A1 - Lehmann, Paul V. A1 - Kuerten, Stefanie T1 - Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood JF - Acta Neuropathologica Communications N2 - Introduction B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). Results Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77). Conclusions Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients. KW - predictive value KW - MS KW - ELISPOT KW - B cells KW - relapse Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126124 VL - 2 IS - 138 ER - TY - JOUR A1 - Hohmann, Christopher A1 - Milles, Bianca A1 - Schinke, Michael A1 - Schroeter, Michael A1 - Ulzheimer, Jochen A1 - Kraft, Peter A1 - Kleinschnitz, Christoph A1 - Lehmann, Paul V. A1 - Kuerten, Stefanie T1 - Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood JF - Acta Neuropathologica Communications N2 - INTRODUCTION: B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). RESULTS: Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77). CONCLUSIONS: Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients. KW - ELISPOT KW - MS KW - predictive value KW - relapse KW - B cells Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120580 SN - 2051-5960 VL - 2 IS - 138 ER - TY - JOUR A1 - Kraft, Peter A1 - Drechsler, Christiane A1 - Gunreben, Ignaz A1 - Heuschmann, Peter Ulrich A1 - Kleinschnitz, Christoph T1 - Case-control study of platelet glycoprotein receptor Ib and IIb/IIIa expression in patients with acute and chronic cerebrovascular disease JF - PLoS ONE N2 - Background Animal models have been instrumental in defining thrombus formation, including the role of platelet surface glycoprotein (GP) receptors, in acute ischemic stroke (AIS). However, the involvement of GP receptors in human ischemic stroke pathophysiology and their utility as biomarkers for ischemic stroke risk and severity requires elucidation. Aims To determine whether platelet GPIb and GPIIb/IIIa receptors are differentially expressed in patients with AIS and chronic cerebrovascular disease (CCD) compared with healthy volunteers (HV) and to identify predictors of GPIb and GPIIb/IIIa expression. Methods This was a case-control study of 116 patients with AIS or transient ischemic attack (TIA), 117 patients with CCD, and 104 HV who were enrolled at our University hospital from 2010 to 2013. Blood sampling was performed once in the CCD and HV groups, and at several time points in patients with AIS or TIA. Linear regression and analysis of variance were used to analyze correlations between platelet GPIb and GPIIb/IIIa receptor numbers and demographic and clinical parameters. Results GPIb and GPIIb/IIIa receptor numbers did not significantly differ between the AIS, CCD, and HV groups. GPIb receptor expression level correlated significantly with the magnitude of GPIIb/IIIa receptor expression and the neutrophil count. In contrast, GPIIb/IIIa receptor numbers were not associated with peripheral immune-cell sub-population counts. Creactive protein was an independent predictor of GPIIb/IIIa (not GPIb) receptor numbers. Conclusions Platelet GPIb and GPIIb/IIIa receptor numbers did not distinguish between patient or control groups in this study, negating their potential use as a biomarker for predicting stroke risk. KW - von Willebrand factor KW - cardiovascular disease KW - increased risk KW - mice impact KW - polymorphisms inflammation KW - blood coagulability KW - atherosclerosis KW - acute ischemic stroke Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148806 VL - 10 IS - 3 ER - TY - JOUR A1 - Montellano, Felipe A. A1 - Kluter, Elisabeth J. A1 - Rücker, Viktoria A1 - Ungethüm, Kathrin A1 - Mackenrodt, Daniel A1 - Wiedmann, Silke A1 - Dege, Tassilo A1 - Quilitzsch, Anika A1 - Morbach, Caroline A1 - Frantz, Stefan A1 - Störk, Stefan A1 - Haeusler, Karl Georg A1 - Kleinschnitz, Christoph A1 - Heuschmann, Peter U. T1 - Cardiac dysfunction and high-sensitive C-reactive protein are associated with troponin T elevation in ischemic stroke: insights from the SICFAIL study JF - BMC Neurology N2 - Background Troponin elevation is common in ischemic stroke (IS) patients. The pathomechanisms involved are incompletely understood and comprise coronary and non-coronary causes, e.g. autonomic dysfunction. We investigated determinants of troponin elevation in acute IS patients including markers of autonomic dysfunction, assessed by heart rate variability (HRV) time domain variables. Methods Data were collected within the Stroke Induced Cardiac FAILure (SICFAIL) cohort study. IS patients admitted to the Department of Neurology, Würzburg University Hospital, underwent baseline investigation including cardiac history, physical examination, echocardiography, and blood sampling. Four HRV time domain variables were calculated in patients undergoing electrocardiographic Holter monitoring. Multivariable logistic regression with corresponding odds ratios (OR) and 95% confidence intervals (CI) was used to investigate the determinants of high-sensitive troponin T (hs-TnT) levels ≥14 ng/L. Results We report results from 543 IS patients recruited between 01/2014–02/2017. Of those, 203 (37%) had hs-TnT ≥14 ng/L, which was independently associated with older age (OR per year 1.05; 95% CI 1.02–1.08), male sex (OR 2.65; 95% CI 1.54–4.58), decreasing estimated glomerular filtration rate (OR per 10 mL/min/1.73 m2 0.71; 95% CI 0.61–0.84), systolic dysfunction (OR 2.79; 95% CI 1.22–6.37), diastolic dysfunction (OR 2.29; 95% CI 1.29–4.02), atrial fibrillation (OR 2.30; 95% CI 1.25–4.23), and increasing levels of C-reactive protein (OR 1.48 per log unit; 95% CI 1.22–1.79). We did not identify an independent association of troponin elevation with the investigated HRV variables. Conclusion Cardiac dysfunction and elevated C-reactive protein, but not a reduced HRV as surrogate of autonomic dysfunction, were associated with increased hs-TnT levels in IS patients independent of established cardiovascular risk factors. KW - echocardiography KW - ischemic stroke KW - troponin KW - heart failure KW - biomarkers Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300119 VL - 22 IS - 1 ER - TY - JOUR A1 - Albert-Weissenberger, Christiane A1 - Mencl, Stine A1 - Schuhmann, Michael K. A1 - Salur, Irmak A1 - Göb, Eva A1 - Langhauser, Friederike A1 - Hopp, Sarah A1 - Hennig, Nelli A1 - Meuth, Sven G. A1 - Nolte, Marc W. A1 - Sirén, Anna-Leena A1 - Kleinschnitz, Christoph T1 - C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation JF - Frontiers in Cellular Neuroscience N2 - Traumatic brain injury (TBI) induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 h. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 h after cryolesion reduced lesion volumes by ~75% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted anti-inflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings. KW - thrombosis KW - traumatic brain injury KW - C1-inhibitor KW - blood-brain barrier KW - contact-kinin system KW - edema KW - inflammation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119263 SN - 1662-5102 VL - 8 ER - TY - JOUR A1 - Koeniger, Tobias A1 - Bell, Luisa A1 - Mifka, Anika A1 - Enders, Michael A1 - Hautmann, Valentin A1 - Mekala, Subba Rao A1 - Kirchner, Philipp A1 - Ekici, Arif B. A1 - Schulz, Christian A1 - Wörsdörfer, Philipp A1 - Mencl, Stine A1 - Kleinschnitz, Christoph A1 - Ergün, Süleyman A1 - Kuerten, Stefanie T1 - Bone marrow‐derived myeloid progenitors in the leptomeninges of adult mice JF - Stem Cells N2 - Although the bone marrow contains most hematopoietic activity during adulthood, hematopoietic stem and progenitor cells can be recovered from various extramedullary sites. Cells with hematopoietic progenitor properties have even been reported in the adult brain under steady‐state conditions, but their nature and localization remain insufficiently defined. Here, we describe a heterogeneous population of myeloid progenitors in the leptomeninges of adult C57BL/6 mice. This cell pool included common myeloid, granulocyte/macrophage, and megakaryocyte/erythrocyte progenitors. Accordingly, it gave rise to all major myelo‐erythroid lineages in clonogenic culture assays. Brain‐associated progenitors persisted after tissue perfusion and were partially inaccessible to intravenous antibodies, suggesting their localization behind continuous blood vessel endothelium such as the blood‐arachnoid barrier. Flt3\(^{Cre}\) lineage tracing and bone marrow transplantation showed that the precursors were derived from adult hematopoietic stem cells and were most likely continuously replaced via cell trafficking. Importantly, their occurrence was tied to the immunologic state of the central nervous system (CNS) and was diminished in the context of neuroinflammation and ischemic stroke. Our findings confirm the presence of myeloid progenitors at the meningeal border of the brain and lay the foundation to unravel their possible functions in CNS surveillance and local immune cell production. KW - hematopoietic KW - meninges KW - mouse KW - myeloid KW - progenitor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224452 VL - 39 IS - 2 SP - 227 EP - 239 ER - TY - JOUR A1 - Göbel, Kerstin A1 - Pankratz, Susann A1 - Asaridou, Chloi-Magdalini A1 - Herrmann, Alexander M. A1 - Bittner, Stefan A1 - Merker, Monika A1 - Ruck, Tobias A1 - Glumm, Sarah A1 - Langhauser, Friederike A1 - Kraft, Peter A1 - Krug, Thorsten F. A1 - Breuer, Johanna A1 - Herold, Martin A1 - Gross, Catharina C. A1 - Beckmann, Denise A1 - Korb-Pap, Adelheid A1 - Schuhmann, Michael K. A1 - Kuerten, Stefanie A1 - Mitroulis, Ioannis A1 - Ruppert, Clemens A1 - Nolte, Marc W. A1 - Panousis, Con A1 - Klotz, Luisa A1 - Kehrel, Beate A1 - Korn, Thomas A1 - Langer, Harald F. A1 - Pap, Thomas A1 - Nieswandt, Bernhard A1 - Wiendl, Heinz A1 - Chavakis, Triantafyllos A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells JF - Nature Communications N2 - Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. KW - blood coagulation KW - factor XII KW - neuroinflammation KW - dendric cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165503 VL - 7 IS - 11626 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Guthmann, Josua A1 - Stoll, Guido A1 - Nieswandt, Bernhard A1 - Kraft, Peter A1 - Kleinschnitz, Christoph T1 - Blocking of platelet glycoprotein receptor Ib reduces “thrombo-inflammation” in mice with acute ischemic stroke JF - Journal of Neuroinflammation N2 - Background: Ischemic stroke causes a strong inflammatory response that includes T cells, monocytes/macrophages, and neutrophils. Interaction of these immune cells with platelets and endothelial cells facilitates microvascular dysfunction and leads to secondary infarct growth. We recently showed that blocking of platelet glycoprotein (GP) receptor Ib improves stroke outcome without increasing the risk of intracerebral hemorrhage. Until now, it has been unclear whether GPIb only mediates thrombus formation or also contributes to the pathophysiology of local inflammation. Methods: Focal cerebral ischemia was induced in C57BL/6 mice by a 60-min transient middle cerebral artery occlusion (tMCAO). Animals were treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab). Rat immunoglobulin G (IgG) Fab was used as control treatment. Stroke outcome, including infarct size and functional deficits as well as the local inflammatory response, was assessed on day 1 after tMCAO. Results: Blocking of GPIb reduced stroke size and improved functional outcome on day 1 after tMCAO without increasing the risk of intracerebral hemorrhage. As expected, disruption of GPIb-mediated pathways in platelets significantly reduced thrombus burden in the cerebral microvasculature. In addition, inhibition of GPIb limited the local inflammatory response in the ischemic brain as indicated by lower numbers of infiltrating T cells and macrophages and lower expression levels of inflammatory cytokines compared with rat IgG Fab-treated controls. Conclusion: In acute ischemic stroke, thrombus formation and inflammation are closely intertwined (“thrombo-inflammation”). Blocking of platelet GPIb can ameliorate thrombo-inflammation. KW - ischemic stroke KW - occlusion KW - transient middle cerebral artery KW - glycoprotein receptor Ib KW - thrombo-inflammation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157582 VL - 14 IS - 18 ER - TY - JOUR A1 - Albert-Weissenberger, Christiane A1 - Stetter, Christian A1 - Meuth, Sven G. A1 - Göbel, Kerstin A1 - Bader, Michael A1 - Sirén, Anna-Leena A1 - Kleinschnitz, Christoph T1 - Blocking of Bradykinin Receptor B1 Protects from Focal Closed Head Injury in Mice by Reducing Axonal Damage and Astroglia Activation JF - Journal of Cerebral Blood Flow and Metabolism N2 - The two bradykinin receptors B1R and B2R are central components of the kallikrein–kinin system with different expression kinetics and binding characteristics. Activation of these receptors by kinins triggers inflammatory responses in the target organ and in most situations enhances tissue damage. We could recently show that blocking of B1R, but not B2R, protects from cortical cryolesion by reducing inflammation and edema formation. In the present study, we investigated the role of B1R and B2R in a closed head model of focal traumatic brain injury (TBI; weight drop). Increased expression of B1R in the injured hemispheres of wild-type mice was restricted to the later stages after brain trauma, i.e. day 7 (P<0.05), whereas no significant induction could be observed for the B2R (P>0.05). Mice lacking the B1R, but not the B2R, showed less functional deficits on day 3 (P<0.001) and day 7 (P<0.001) compared with controls. Pharmacological blocking of B1R in wild-type mice had similar effects. Reduced axonal injury and astroglia activation could be identified as underlying mechanisms, while inhibition of B1R had only little influence on the local inflammatory response in this model. Inhibition of B1R may become a novel strategy to counteract trauma-induced neurodegeneration. KW - R-715 KW - kinin receptors KW - closed head injury KW - β-APP KW - astrocytes KW - TNF-α Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125903 VL - 32 IS - 9 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Langhauser, Friederike A1 - Kraft, Peter A1 - Kleinschnitz, Christoph T1 - B cells do not have a major pathophysiologic role in acute ischemic stroke in mice JF - Journal of Neuroinflammation N2 - Background Lymphocytes have been shown to play an important role in the pathophysiology of acute ischemic stroke, but the properties of B cells remain controversial. The aim of this study was to unravel the role of B cells during acute cerebral ischemia using pharmacologic B cell depletion, B cell transgenic mice, and adoptive B cell transfer experiments. Methods Transient middle cerebral artery occlusion (60 min) was induced in wild-type mice treated with an anti-CD20 antibody 24 h before stroke onset, JHD\(^{−/−}\) mice and Rag1\(^{−/−}\) mice 24 h after adoptive B cell transfer. Stroke outcome was assessed at days 1 and 3. Infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain sections, and neurological scores were evaluated. The local inflammatory response was determined by real-time PCR and immunohistochemistry. Apoptosis was analyzed by TUNEL staining, and astrocyte activation was revealed using immunohistochemistry and Western blot. Results Pharmacologic depletion of B cells did not influence infarct volumes and functional outcome at day 1 after stroke. Additionally, lack of circulating B cells in JHD\(^{−/−}\) mice also failed to influence stroke outcome at days 1 and 3. Furthermore, reconstitution of Rag1\(^{−/−}\) mice with B cells had no influence on infarct volumes. Conclusion Targeting B cells in experimental stroke did not influence lesion volume and functional outcome during the acute phase. Our findings argue against a major pathophysiologic role of B cells during acute ischemic stroke. KW - ischemic stroke KW - transient middle cerebral artery occlusion KW - B cells Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158155 VL - 14 IS - 112 ER - TY - JOUR A1 - Simon, Micha A1 - Ipek, Rojda A1 - Homola, György A. A1 - Rovituso, Damiano M. A1 - Schampel, Andrea A1 - Kleinschnitz, Christoph A1 - Kuerten, Stefanie T1 - Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis JF - Journal of Neuroinflammation N2 - Background: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) for which several new treatment options were recently introduced. Among them is the monoclonal anti-CD52 antibody alemtuzumab that depletes mainly B cells and T cells in the immune periphery. Considering the ongoing controversy about the involvement of B cells and in particular the formation of B cell aggregates in the brains of progressive MS patients, an in-depth understanding of the effects of anti-CD52 antibody treatment on the B cell compartment in the CNS itself is desirable. Methods: We used myelin basic protein (MBP)-proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 (B6) mice as B cell-dependent model of MS. Mice were treated intraperitoneally either at the peak of EAE or at 60 days after onset with 200 μg murine anti-CD52 vs. IgG2a isotype control antibody for five consecutive days. Disease was subsequently monitored for 10 days. The antigen-specific B cell/antibody response was measured by ELISPOT and ELISA. Effects on CNS infiltration and B cell aggregation were determined by immunohistochemistry. Neurodegeneration was evaluated by Luxol Fast Blue, SMI-32, and Olig2/APC staining as well as by electron microscopy and phosphorylated heavy neurofilament serum ELISA. Results: Treatment with anti-CD52 antibody attenuated EAE only when administered at the peak of disease. While there was no effect on the production of MP4-specific IgG, the treatment almost completely depleted CNS infiltrates and B cell aggregates even when given as late as 60 days after onset. On the ultrastructural level, we observed significantly less axonal damage in the spinal cord and cerebellum in chronic EAE after anti-CD52 treatment. Conclusion: Anti-CD52 treatment abrogated B cell infiltration and disrupted existing B cell aggregates in the CNS. KW - Alemtuzumab KW - B cells KW - CD52 KW - CNS KW - EAE KW - MS Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176120 VL - 15 IS - 225 ER - TY - JOUR A1 - Fluri, Felix A1 - Schuhmann, Michael K A1 - Kleinschnitz, Christoph T1 - Animal models of ischemic stroke and their application in clinical research JF - Drug Design, Development and Therapy N2 - This review outlines the most frequently used rodent stroke models and discusses their strengths and shortcomings. Mimicking all aspects of human stroke in one animal model is not feasible because ischemic stroke in humans is a heterogeneous disorder with a complex pathophysiology. The transient or permanent middle cerebral artery occlusion (MCAo) model is one of the models that most closely simulate human ischemic stroke. Furthermore, this model is characterized by reliable and well-reproducible infarcts. Therefore, the MCAo model has been involved in the majority of studies that address pathophysiological processes or neuroprotective agents. Another model uses thromboembolic clots and thus is more convenient for investigating thrombolytic agents and pathophysiological processes after thrombolysis. However, for many reasons, preclinical stroke research has a low translational success rate. One factor might be the choice of stroke model. Whereas the therapeutic responsiveness of permanent focal stroke in humans declines significantly within 3 hours after stroke onset, the therapeutic window in animal models with prompt reperfusion is up to 12 hours, resulting in a much longer action time of the investigated agent. Another major problem of animal stroke models is that studies are mostly conducted in young animals without any comorbidity. These models differ from human stroke, which particularly affects elderly people who have various cerebrovascular risk factors. Choosing the most appropriate stroke model and optimizing the study design of preclinical trials might increase the translational potential of animal stroke models. KW - permanent and transient middle cerebral artery occlusion KW - thromboembolic clot model KW - mouse KW - rat KW - microsphere/macrosphere KW - endothelin-1 KW - photothrombosis KW - thromboembolic stroke Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149157 VL - 9 ER - TY - JOUR A1 - Albert-Weißenberger, Christiane A1 - Várrallyay, Csanád A1 - Raslan, Furat A1 - Kleinschnitz, Christoph A1 - Sirén, Anna-Leena T1 - An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice N2 - Traumatic brain injury (TBI) is a result of an outside force causing immediate mechanical disruption of brain tissue and delayed pathogenic events. In order to examine injury processes associated with TBI, a number of rodent models to induce brain trauma have been described. However, none of these models covers the entire spectrum of events that might occur in TBI. Here we provide a thorough methodological description of a straightforward closed head weight drop mouse model to assess brain injuries close to the clinical conditions of human TBI. KW - Medizin KW - closed head injury KW - traumatic brain injury KW - neurobehavioural deficits KW - astrocyte KW - microglia KW - neurons Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75368 ER - TY - JOUR A1 - Stetter, Christian A1 - Lopez-Caperuchipi, Simon A1 - Hopp-Krämer, Sarah A1 - Bieber, Michael A1 - Kleinschnitz, Christoph A1 - Sirén, Anna-Leena A1 - Albert-Weißenberger, Christiane T1 - Amelioration of cognitive and behavioral deficits after traumatic brain injury in coagulation factor XII deficient mice JF - International Journal of Molecular Sciences N2 - Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits on day 7 after weight-drop traumatic brain injury (TBI) were significantly reduced in FXII\(^{−/−}\) mice compared to wild type (WT) mice. Also, glycoprotein Ib (GPIb)-positive platelet aggregates were more frequent in brain microvasculature of WT than FXII\(^{−/−}\) mice 3 months after TBI. Six weeks after TBI, memory for novel object was significantly reduced in both female and male WT but not in FXII\(^{−/−}\) mice compared to sham-operated mice. In the setting of automated home-cage monitoring of socially housed mice in IntelliCages, female WT mice but not FXII\(^{−/−}\) mice showed decreased exploration and reacted negatively to reward extinction one month after TBI. Since neuroendocrine stress after TBI might contribute to trauma-induced cognitive dysfunction and negative emotional contrast reactions, we measured peripheral corticosterone levels and the ration of heart, lung, and spleen weight to bodyweight. Three months after TBI, plasma corticosterone levels were significantly suppressed in both female and male WT but not in FXII\(^{−/−}\) mice, while the relative heart weight increased in males but not in females of both phenotypes when compared to sham-operated mice. Our results indicate that FXII deficiency is associated with efficient post-traumatic behavioral and neuroendocrine recovery. KW - closed head injury KW - contact-kinin system KW - object recognition memory KW - IntelliCage KW - Crespi effect KW - stress Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284959 SN - 1422-0067 VL - 22 IS - 9 ER - TY - JOUR A1 - Hopp, Sarah A1 - Nolte, Marc W. A1 - Stetter, Christian A1 - Kleinschnitz, Christoph A1 - Sirén, Anna-Leena A1 - Albert-Weissenberger, Christiane T1 - Alleviation of secondary brain injury, posttraumatic inflammation, and brain edema formation by inhibition of factor XIIa JF - Journal of Neuroinflammation N2 - Background: Traumatic brain injury (TBI) is a devastating neurological condition and a frequent cause of permanent disability. Posttraumatic inflammation and brain edema formation, two pathological key events contributing to secondary brain injury, are mediated by the contact-kinin system. Activation of this pathway in the plasma is triggered by activated factor XII. Hence, we set out to study in detail the influence of activated factor XII on the abovementioned pathophysiological features of TBI. Methods: Using a cortical cryogenic lesion model in mice, we investigated the impact of genetic deficiency of factor XII and inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused Infestin-4 on the release of bradykinin, the brain lesion size, and contact-kinin system-dependent pathological events. We determined protein levels of bradykinin, intracellular adhesion molecule-1, CC-chemokine ligand 2, and interleukin-1β by enzyme-linked immunosorbent assays and mRNA levels of genes related to inflammation by quantitative real-time PCR. Brain lesion size was determined by tetrazolium chloride staining. Furthermore, protein levels of the tight junction protein occludin, integrity of the blood-brain barrier, and brain water content were assessed by Western blot analysis, extravasated Evans Blue dye, and the wet weight-dry weight method, respectively. Infiltration of neutrophils and microglia/activated macrophages into the injured brain lesions was quantified by immunohistological stainings. Results: We show that both genetic deficiency of factor XII and inhibition of activated factor XII in mice diminish brain injury-induced bradykinin release by the contact-kinin system and minimize brain lesion size, blood-brain barrier leakage, brain edema formation, and inflammation in our brain injury model. Conclusions: Stimulation of bradykinin release by activated factor XII probably plays a prominent role in expanding secondary brain damage by promoting brain edema formation and inflammation. Pharmacological blocking of activated factor XII could be a useful therapeutic principle in the treatment of TBI-associated pathologic processes by alleviating posttraumatic inflammation and brain edema formation. KW - factor XII KW - focal brain lesion KW - brain edema Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157490 VL - 14 IS - 39 ER - TY - JOUR A1 - Luger, Sebastian A1 - Hohmann, Carina A1 - Niemann, Daniela A1 - Kraft, Peter A1 - Gunreben, Ignaz A1 - Neumann-Haefelin, Tobias A1 - Kleinschnitz, Christoph A1 - Steinmetz, Helmuth A1 - Foerch, Christian A1 - Pfeilschifter, Waltraud T1 - Adherence to oral anticoagulant therapy in secondary stroke prevention - impact of the novel oral anticoagulants JF - Patient Preference and Adherence N2 - Background: Oral anticoagulant therapy (OAT) potently prevents strokes in patients with atrial fibrillation. Vitamin K antagonists (VKA) have been the standard of care for long-term OAT for decades, but non-VKA oral anticoagulants (NOAC) have recently been approved for this indication, and raised many questions, among them their influence on medication adherence. We assessed adherence to VKA and NOAC in secondary stroke prevention. Methods: All patients treated from October 2011 to September 2012 for ischemic stroke or transient ischemic attack with a subsequent indication for OAT, at three academic hospitals were entered into a prospective registry, and baseline data and antithrombotic treatment at discharge were recorded. At the 1-year follow-up, we assessed the adherence to different OAT strategies and patients' adherence to their respective OAT. We noted OAT changes, reasons to change treatment, and factors that influence persistence to the prescribed OAT. Results: In patients discharged on OAT, we achieved a fatality corrected response rate of 73.3% (n=209). A total of 92% of these patients received OAT at the 1-year follow-up. We observed good adherence to both VKA and NOAC (VKA, 80.9%; NOAC, 74.8%; P=0.243) with a statistically nonsignificant tendency toward a weaker adherence to dabigatran. Disability at 1-year follow-up was an independent predictor of lower adherence to any OAT after multivariate analysis, whereas the choice of OAT did not have a relevant influence. Conclusion: One-year adherence to OAT after stroke is strong (>90%) and patients who switch therapy most commonly switch toward another OAT. The 1-year adherence rates to VKA and NOAC in secondary stroke prevention do not differ significantly between both therapeutic strategies. KW - transient ischemic attack KW - adherence KW - non-VKA oral anticoagulants KW - vitamin K antagonists KW - prevention KW - stroke KW - atrial fibrillation KW - warfarin KW - guidelines KW - scale Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144477 VL - 9 ER - TY - JOUR A1 - Gunreben, Ignaz A1 - Geis, Christian A1 - Kleinschnitz, Christoph T1 - Acute tetraparesis secondary to bilateral precentral gyral cerebral ischemia: a case report JF - Journal of Medical Case Reports N2 - Introduction Sudden tetraparesis represents a neurological emergency and is most often caused by traumatic spinal cord injury, spinal epidural bleeding or brainstem ischemia and less frequently by medial disc herniation or spinal ischemia. Case presentation Here we report the rare case of an 82-year-old Caucasian man who developed severe tetraparesis four days after radical cystoprostatectomy. An emergency diagnostic study for spinal cord affection was normal. Brain magnetic resonance imaging revealed acute bilateral ischemic strokes in the precentral gyri as the underlying cause. Conclusions This case report underlines the need to also consider unusual causes of tetraparesis in an emergency situation apart from spinal cord or brain stem injury in order not to leave severe symptomatology unclear and possibly miss therapeutic options. KW - Medizin Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96179 UR - http://www.jmedicalcasereports.com/content/7/1/61 ER - TY - JOUR A1 - Fluri, Felix A1 - Fleischer, Michael A1 - Kleinschnitz, Christoph T1 - Accidental Thrombolysis in a Stroke Patient Receiving Apixaban JF - Cerebrovascular Diseases Extra N2 - No abstract available. KW - acute management of stroke KW - acute ischemic stroke KW - acute neurology KW - acute stroke imaging KW - acute stroke management KW - acute stroke outcome Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126326 VL - 5 ER - TY - JOUR A1 - Kleikers, Pamela W. M. A1 - Hooijmans, Carlijn A1 - Göb, Eva A1 - Langhauser, Friederike A1 - Rewell, Sarah S. J. A1 - Radermacher, Kim A1 - Ritskes-Hoitinga, Merel A1 - Howells, David W. A1 - Kleinschnitz, Christoph A1 - Schmidt, Harald H. H. W. T1 - A combined pre-clinical meta-analysis and randomized confirmatory trial approach to improve data validity for therapeutic target validation JF - Scientific Reports N2 - Biomedical research suffers from a dramatically poor translational success. For example, in ischemic stroke, a condition with a high medical need, over a thousand experimental drug targets were unsuccessful. Here, we adopt methods from clinical research for a late-stage pre-clinical meta-analysis (MA) and randomized confirmatory trial (pRCT) approach. A profound body of literature suggests NOX\(_{2}\) to be a major therapeutic target in stroke. Systematic review and MA of all available NOX\(_{2}\)\(^{-/y}\) studies revealed a positive publication bias and lack of statistical power to detect a relevant reduction in infarct size. A fully powered multi-center pRCT rejects NOX\(_{2}\) as a target to improve neurofunctional outcomes or achieve a translationally relevant infarct size reduction. Thus stringent statistical thresholds, reporting negative data and a MA-pRCT approach can ensure biomedical data validity and overcome risks of bias. KW - focal cerebral ischemia KW - darbepoetin alpha KW - mice KW - translational stroke research KW - colony-stimulating factor KW - NADPH oxidase inhibitors KW - chronic kidney disease KW - diabetes mellitus KW - oxidative stress KW - search filter Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151401 VL - 5 IS - 13428 ER -