TY - JOUR A1 - Bartl, Jasmin A1 - Scholz, Claus-Jürgen A1 - Hinterberger, Margareta A1 - Jungwirth, Susanne A1 - Wichart, Ildiko A1 - Rainer, Michael K. A1 - Kneitz, Susanne A1 - Danielczyk, Walter A1 - Tragl, Karl H. A1 - Fischer, Peter A1 - Riederer, Peter A1 - Grünblatt, Edna T1 - Disorder-specific effects of polymorphisms at opposing ends of the Insulin Degrading Enzymegene JF - BMC Medical Genetics N2 - Background Insulin-degrading enzyme (IDE) is the ubiquitously expressed enzyme responsible for insulin and amyloid beta (Aβ) degradation. IDE gene is located on chromosome region 10q23-q25 and exhibits a well-replicated peak of linkage with Type 2 diabetes mellitus (T2DM). Several genetic association studies examined IDE gene as a susceptibility gene for Alzheimer's disease (AD), however with controversial results. Methods We examined associations of three IDE polymorphisms (IDE2, rs4646953; IDE7, rs2251101 and IDE9, rs1887922) with AD, Aβ42 plasma level and T2DM risk in the longitudinal Vienna Transdanube Aging (VITA) study cohort. Results The upstream polymorphism IDE2 was found to influence AD risk and to trigger the Aβ42 plasma level, whereas the downstream polymorphism IDE7 modified the T2DM risk; no associations were found for the intronic variant IDE9. Conclusions Based on our SNP and haplotype results, we delineate the model that IDE promoter and 3' untranslated region/downstream variation may have different effects on IDE expression, presumably a relevant endophenotype with disorder-specific effects on AD and T2DM susceptibility. KW - Insulin Degrading Enzyme Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137744 VL - 12 IS - 151 ER - TY - JOUR A1 - Van den Hove, Daniel A1 - Jakob, Sissi Brigitte A1 - Schraut, Karla-Gerlinde A1 - Kenis, Gunter A1 - Schmitt, Angelika Gertrud A1 - Kneitz, Susanne A1 - Scholz, Claus-Jürgen A1 - Wiescholleck, Valentina A1 - Ortega, Gabriela A1 - Prickaerts, Jos A1 - Steinbusch, Harry A1 - Lesch, Klaus-Peter T1 - Differential Effects of Prenatal Stress in 5-Htt Deficient Mice: Towards Molecular Mechanisms of Gene x Environment Interactions JF - PLoS ONE N2 - Prenatal stress (PS) has been shown to influence the development of the fetal brain and to increase the risk for the development of psychiatric disorders in later life. Furthermore, the variation of human serotonin transporter (5-HTT, SLC6A4) gene was suggested to exert a modulating effect on the association between early life stress and the risk for depression. In the present study, we used a 5-HttxPS paradigm to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition, anxiety-and depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt +/-) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression profiling was performed using the Affymetrix GeneChip (R) Mouse Genome 430 2.0 Array. 5-Htt +/- offspring showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt +/- mice to PS was associated with increased depressive-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt +/- genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotypexPS manner, indicating a genexenvironment interaction at the molecular level. In conclusion, our data suggest that although the 5-Htt +/- genotype shows clear adaptive capacity, 5-Htt +/- mice -particularly females-at the same time appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression profiles suggest that distinct molecular mechanisms mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction. KW - Serotonin transporter polymorphism KW - Acute tryptophan depletion KW - Anxiety-like behavior KW - Long-term depression KW - Knock-out mice KW - Major depression KW - Interferon-alpha KW - Physiological functions KW - Restraint stress KW - Bipolar disorder Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135111 VL - 6 IS - 8 ER - TY - JOUR A1 - Simon, Christian M. A1 - Rauskolb, Stefanie A1 - Gunnersen, Jennifer M. A1 - Holtmann, Bettina A1 - Drepper, Carsten A1 - Dombert, Benjamin A1 - Braga, Massimiliano A1 - Wiese, Stefan A1 - Jablonka, Sibylle A1 - Pühringer, Dirk A1 - Zielasek, Jürgen A1 - Hoeflich, Andreas A1 - Silani, Vincenzo A1 - Wolf, Eckhard A1 - Kneitz, Susanne A1 - Sommer, Claudia A1 - Toyka, Klaus V. A1 - Sendtner, Michael T1 - Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy JF - Acta Neuropathologica N2 - Diabetic neuropathy (DNP), afflicting sensory and motor nerve fibers, is a major complication in diabetes.The underlying cellular mechanisms of axon degeneration are poorly understood. IGFBP5, an inhibitory binding protein for insulin-like growth factor 1 (IGF1) is highly up-regulated in nerve biopsies of patients with DNP. We investigated the pathogenic relevance of this finding in transgenic mice overexpressing IGFBP5 in motor axons and sensory nerve fibers. These mice develop motor axonopathy and sensory deficits similar to those seen in DNP. Motor axon degeneration was also observed in mice in which the IGF1 receptor(IGF1R) was conditionally depleted in motoneurons, indicating that reduced activity of IGF1 on IGF1R in motoneurons is responsible for the observed effect. These data provide evidence that elevated expression of IGFBP5 in diabetic nerves reduces the availability of IGF1 for IGF1R on motor axons, thus leading to progressive neurodegeneration. Inhibition of IGFBP5 could thus offer novel treatment strategies for DNP. KW - Motor nerve biopsy KW - Diabetic polyneuropathy KW - Neuropathy KW - Neurotrophic factors KW - Axonal degeneration Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154569 VL - 130 SP - 373 EP - 387 ER -