TY - JOUR A1 - Adolfi, Mateus C. A1 - Du, Kang A1 - Kneitz, Susanne A1 - Cabau, Cédric A1 - Zahm, Margot A1 - Klopp, Christophe A1 - Feron, Romain A1 - Paixão, Rômulo V. A1 - Varela, Eduardo S. A1 - de Almeida, Fernanda L. A1 - de Oliveira, Marcos A. A1 - Nóbrega, Rafael H. A1 - Lopez-Roques, Céline A1 - Iampietro, Carole A1 - Lluch, Jérôme A1 - Kloas, Werner A1 - Wuertz, Sven A1 - Schaefer, Fabian A1 - Stöck, Matthias A1 - Guiguen, Yann A1 - Schartl, Manfred T1 - A duplicated copy of id2b is an unusual sex-determining candidate gene on the Y chromosome of arapaima (Arapaima gigas) JF - Scientific Reports N2 - Arapaima gigas is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified id2bbY, a duplicated copy of the inhibitor of DNA binding 2b (id2b) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for id2bbY was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog, id2ba, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm id2bbY as a prime candidate for the master sex-determiner. Acting through the TGF beta signaling pathway, id2bbY from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes. KW - evolutionary genetics KW - genetic markers KW - genome Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265672 VL - 11 IS - 1 ER - TY - JOUR A1 - Adolfi, Mateus C. A1 - Herpin, Amaury A1 - Martinez-Bengochea, Anabel A1 - Kneitz, Susanne A1 - Regensburger, Martina A1 - Grunwald, David J. A1 - Schartl, Manfred T1 - Crosstalk Between Retinoic Acid and Sex-Related Genes Controls Germ Cell Fate and Gametogenesis in Medaka JF - Frontiers in Cell and Developmental Biology N2 - Sex determination (SD) is a highly diverse and complex mechanism. In vertebrates, one of the first morphological differences between the sexes is the timing of initiation of the first meiosis, where its initiation occurs first in female and later in male. Thus, SD is intimately related to the responsiveness of the germ cells to undergo meiosis in a sex-specific manner. In some vertebrates, it has been reported that the timing for meiosis entry would be under control of retinoic acid (RA), through activation of Stra8. In this study, we used a fish model species for sex determination and lacking the stra8 gene, the Japanese medaka (Oryzias latipes), to investigate the connection between RA and the sex determination pathway. Exogenous RA treatments act as a stress factor inhibiting germ cell differentiation probably by activation of dmrt1a and amh. Disruption of the RA degrading enzyme gene cyp26a1 induced precocious meiosis and oogenesis in embryos/hatchlings of female and even some males. Transcriptome analyzes of cyp26a1–/–adult gonads revealed upregulation of genes related to germ cell differentiation and meiosis, in both ovaries and testes. Our findings show that germ cells respond to RA in a stra8 independent model species. The responsiveness to RA is conferred by sex-related genes, restricting its action to the sex differentiation period in both sexes. KW - sex determination KW - retinoic acid KW - meiosis KW - gametogenesis KW - medaka Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222669 SN - 2296-634X VL - 8 ER - TY - JOUR A1 - Anelli, Viviana A1 - Ordas, Anita A1 - Kneitz, Susanne A1 - Sagredo, Leonel Munoz A1 - Gourain, Victor A1 - Schartl, Manfred A1 - Meijer, Annemarie H. A1 - Mione, Marina T1 - Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression JF - Frontiers in Genetics N2 - Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc&acc=GSE37015. KW - zebrafish KW - cancer models KW - microRNA KW - Jmjd6 KW - ras KW - melanoma KW - miR-146a KW - miR-193a Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196963 SN - 1664-8021 VL - 9 IS - 675 ER - TY - JOUR A1 - Bartl, Jasmin A1 - Scholz, Claus-Jürgen A1 - Hinterberger, Margareta A1 - Jungwirth, Susanne A1 - Wichart, Ildiko A1 - Rainer, Michael K. A1 - Kneitz, Susanne A1 - Danielczyk, Walter A1 - Tragl, Karl H. A1 - Fischer, Peter A1 - Riederer, Peter A1 - Grünblatt, Edna T1 - Disorder-specific effects of polymorphisms at opposing ends of the Insulin Degrading Enzymegene JF - BMC Medical Genetics N2 - Background Insulin-degrading enzyme (IDE) is the ubiquitously expressed enzyme responsible for insulin and amyloid beta (Aβ) degradation. IDE gene is located on chromosome region 10q23-q25 and exhibits a well-replicated peak of linkage with Type 2 diabetes mellitus (T2DM). Several genetic association studies examined IDE gene as a susceptibility gene for Alzheimer's disease (AD), however with controversial results. Methods We examined associations of three IDE polymorphisms (IDE2, rs4646953; IDE7, rs2251101 and IDE9, rs1887922) with AD, Aβ42 plasma level and T2DM risk in the longitudinal Vienna Transdanube Aging (VITA) study cohort. Results The upstream polymorphism IDE2 was found to influence AD risk and to trigger the Aβ42 plasma level, whereas the downstream polymorphism IDE7 modified the T2DM risk; no associations were found for the intronic variant IDE9. Conclusions Based on our SNP and haplotype results, we delineate the model that IDE promoter and 3' untranslated region/downstream variation may have different effects on IDE expression, presumably a relevant endophenotype with disorder-specific effects on AD and T2DM susceptibility. KW - Insulin Degrading Enzyme Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137744 VL - 12 IS - 151 ER - TY - JOUR A1 - Beyrich, Claudia A1 - Löffler, Jürgen A1 - Kobsar, Anna A1 - Speer, Christian P. A1 - Kneitz, Susanne A1 - Eigenthaler, Martin T1 - Infection of Human Coronary Artery Endothelial Cells by Group B Streptococcus Contributes to Dysregulation of Apoptosis, Hemostasis, and Innate Immune Responses [Research Article] N2 - Early onset sepsis due to group B streptococcus leads to neonatal morbidity, increased mortality, and long-term neurological deficencies. Interaction between septicemic GBS and confluent monolayers of human coronary artery endothelial cells (HCAECs) was analyzed by genome wide expression profiling. In total, 124 genes were differentially expressed (89 upregulated, 35 downregulated) based on a more than 3-fold difference to control HCAEC. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, infection, and inflammation. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real-time RT-PCR assay (granulocy te chemotactic protein 2), ELISA (urokinase, cyclooxygenase 2, granulocyte chemotactic protein 1), and western blotting (Heme oxygenase1, BCL2 interacting protein) at various time points between 4 and 24 hours. These results indicate that GBS infection might influence signalling pathways leading to impaired function of the innate immune system and hemorrhagic and inflammatory complications during GBS sepsis. KW - Medizin Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68834 ER - TY - JOUR A1 - Dedukh, Dmitrij A1 - Da Cruz, Irene A1 - Kneitz, Susanne A1 - Marta, Anatolie A1 - Ormanns, Jenny A1 - Tichopád, Tomáš A1 - Lu, Yuan A1 - Alsheimer, Manfred A1 - Janko, Karel A1 - Schartl, Manfred T1 - Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa JF - Chromosome Research N2 - Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes. KW - meiosis KW - parthenogenesis KW - synaptonemal complex KW - recombination KW - crossing-over KW - achiasmatic KW - transcriptome KW - oogenesis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325128 VL - 30 IS - 4 ER - TY - JOUR A1 - Deeken, Rosalia A1 - Gohlke, Jochen A1 - Scholz, Claus-Juergen A1 - Kneitz, Susanne A1 - Weber, Dana A1 - Fuchs, Joerg A1 - Hedrich, Rainer T1 - DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors JF - PLoS Genetics N2 - Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA–encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA–mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors. KW - DNA methylation KW - DNA transcription KW - gene expression KW - oncogenes KW - plant genomics KW - sequence motif analysis KW - arabidopsis thaliana KW - agrobacterium tumefaciens Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96318 ER - TY - JOUR A1 - Du, Kang A1 - Wuertz, Sven A1 - Adolfi, Mateus A1 - Kneitz, Susanne A1 - Stöck, Matthias A1 - Oliveira, Marcos A1 - Nóbrega, Rafael A1 - Ormanns, Jenny A1 - Kloas, Werner A1 - Feron, Romain A1 - Klopp, Christophe A1 - Parrinello, Hugues A1 - Journot, Laurent A1 - He, Shunping A1 - Postlethwait, John A1 - Meyer, Axel A1 - Guiguen, Yann A1 - Schartl, Manfred T1 - The genome of the arapaima (Arapaima gigas) provides insights into gigantism, fast growth and chromosomal sex determination system JF - Scientific Reports N2 - We have sequenced the genome of the largest freshwater fish species of the world, the arapaima. Analysis of gene family dynamics and signatures of positive selection identified genes involved in the specific adaptations and unique features of this iconic species, in particular it’s large size and fast growth. Genome sequences from both sexes combined with RAD-tag analyses from other males and females led to the isolation of male-specific scaffolds and supports an XY sex determination system in arapaima. Whole transcriptome sequencing showed that the product of the gland-like secretory organ on the head surface of males and females may not only provide nutritional fluid for sex-unbiased parental care, but that the organ itself has a more specific function in males, which engage more in parental care. KW - Genome KW - Genomics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201333 VL - 9 ER - TY - JOUR A1 - Endres, Marcel A1 - Kneitz, Susanne A1 - Orth, Martin F. A1 - Perera, Ruwan K. A1 - Zernecke, Alma A1 - Butt, Elke T1 - Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1) JF - Oncotarget N2 - The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines. By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines. In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown. Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression. The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies. KW - LASP1 KW - c-Fos KW - extracellular matrix KW - AP-1 KW - matrix metalloproteinases KW - breast cancer Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176920 VL - 7 IS - 39 ER - TY - JOUR A1 - Fetiva, Maria Camila A1 - Liss, Franziska A1 - Gertzmann, Dörthe A1 - Thomas, Julius A1 - Gantert, Benedikt A1 - Vogl, Magdalena A1 - Sira, Nataliia A1 - Weinstock, Grit A1 - Kneitz, Susanne A1 - Ade, Carsten P. A1 - Gaubatz, Stefan T1 - Oncogenic YAP mediates changes in chromatin accessibility and activity that drive cell cycle gene expression and cell migration JF - Nucleic Acids Research N2 - YAP, the key protein effector of the Hippo pathway, is a transcriptional co-activator that controls the expression of cell cycle genes, promotes cell growth and proliferation and regulates organ size. YAP modulates gene transcription by binding to distal enhancers, but the mechanisms of gene regulation by YAP-bound enhancers remain poorly understood. Here we show that constitutive active YAP5SA leads to widespread changes in chromatin accessibility in untransformed MCF10A cells. Newly accessible regions include YAP-bound enhancers that mediate activation of cycle genes regulated by the Myb-MuvB (MMB) complex. By CRISPR-interference we identify a role for YAP-bound enhancers in phosphorylation of Pol II at Ser5 at MMB-regulated promoters, extending previously published studies that suggested YAP primarily regulates the pause-release step and transcriptional elongation. YAP5SA also leads to less accessible ‘closed’ chromatin regions, which are not directly YAP-bound but which contain binding motifs for the p53 family of transcription factors. Diminished accessibility at these regions is, at least in part, a consequence of reduced expression and chromatin-binding of the p53 family member ΔNp63 resulting in downregulation of ΔNp63-target genes and promoting YAP-mediated cell migration. In summary, our studies uncover changes in chromatin accessibility and activity that contribute to the oncogenic activities of YAP. KW - oncogenic YAP KW - chromatin KW - cell cycle KW - gene expression KW - cell migration KW - YAP5SA Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350218 VL - 51 IS - 9 ER -