TY - JOUR A1 - Morschhäuser, Joachim A1 - Vetter, Viktoria A1 - Korhonen, Timo A1 - Uhlin, Bernt Eric A1 - Hacker, Jörg T1 - Regulation and binding properties of S fimbriae cloned from E. coli strains causing urinary tract infection and meningitis N2 - S fimbriae are able to recognize receptor molecules containing sialic acid and are produced by pathogenic E. coli strains causing urinary tract infection and menigitis. In order to characterize the corresponding genetic determinant, termed S fimbrial adhesin ( sfa) gene duster, we have cloned the S-specific genes from a urinary pathogen and from a meningitis isolate. Nine genes are involved in the production of S fimbriae, two of these, sfaB and sfaC code for regulatory proteins being necessary for the expression of S fimbriae. Two promoters, PB and Pc, are located in front of these genes. Transcription of the sfa determinant is influenced by activation of the promotersvia SfaB and SfaC, the action of the H-NS protein and an RNaseE-specific mRNA processing. In addition, a third promoter, P A• located in front of the major subunit gene sfaA, can be activated under special circumstances. Four genes of the sfa determinant code for the subunit-specific proteins, SfaA (16 kda), SfaG (17 kda), SfaS (14 kda) and SfaH (29 kda). It was demonstrated that the protein SfaA is the major subunit protein while SfaS is identical to the sialic-acid-specific adhesin of S fimbriae. The introduction of specific mutations into sfaS revealed that a region of six amino acids of the adhesin which includes two lysine and one arginine residues is involved in the receptor specific interaction of S fimbriae. Additionally, it has been shown that SfaS is necessary for the induction of fimbriation while SfaH plays a role in the stringency of binding of S fimbriae to erythrocytes. KW - Escherichia coli KW - Harnwegsinfekt KW - Hirnhautentzündung Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86140 ER - TY - JOUR A1 - Parkkinen, Jaakko A1 - Hacker, Jörg A1 - Korhonen, Timo K. T1 - Enhancement of tissue plasminogen activator-catalyzed plasminogen activation by Escherichia coli S fimbriae associated with neonatal septicaemia and meningitis. N2 - The effect of Escherichia coli strains isolated from blood and cerebrospinal fluid of septic infants on plasminogen activation was studied. These strains typically carry a filamentous surface protein, S fimbria, that has formerly been shown to bind to endothelial cells and interact with plasminogen. The bacteria effectively promoted plasminogen activation by tissue plasminogen activator (t-PA) which was inhibited by e-aminocaproic acid. A recombinant strain expressing S fimbriae accelerated t-PAcatalyzed plasminogen activation to a similar extent as did the wild-type strains whereas the nonfimbriate recipient strain had no effect. After incubation with t-PA and plasminogen, the S-fimbriate strain displayed bacterium-bound plasmin activity whereas the nonfimbriate strain did not. Bacterium-associated plasmin generation was also observed with a strain expressing mutagenized S fimbriae that Iack the cell-binding subunit SfaS but not with a strain lacking the major subunit SfaA. Both t-PA and plasminogen bound to purified S fimbriae in a lysine-dependent manner and purified S fimbriae accelerated t-PA-catalyzed plasminogen activation. The results indicate that E. coli S fimbriae form a complex with t-PA and plasminogen which enhances the rate of plasminogen activation and generates bacterium-bound plasmin. This may promote bacterial invasion and persistence in tissues and contribute to the systemic activation of fibrinolysis in septicaemia. KW - Escherichia coli Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71566 ER -