TY - JOUR A1 - Garitano-Trojaola, Andoni A1 - Sancho, Ana A1 - Götz, Ralph A1 - Eiring, Patrick A1 - Walz, Susanne A1 - Jetani, Hardikkumar A1 - Gil-Pulido, Jesus A1 - Da Via, Matteo Claudio A1 - Teufel, Eva A1 - Rhodes, Nadine A1 - Haertle, Larissa A1 - Arellano-Viera, Estibaliz A1 - Tibes, Raoul A1 - Rosenwald, Andreas A1 - Rasche, Leo A1 - Hudecek, Michael A1 - Sauer, Markus A1 - Groll, Jürgen A1 - Einsele, Hermann A1 - Kraus, Sabrina A1 - Kortüm, Martin K. T1 - Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia JF - Communications Biology N2 - The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML. KW - actin KW - acute myeloid leukaemia Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260709 VL - 4 IS - 1 ER - TY - JOUR A1 - Zhou, Xiang A1 - Steinhardt, Maximilian Johannes A1 - Düll, Johannes A1 - Krummenast, Franziska A1 - Danhof, Sophia A1 - Meckel, Katharina A1 - Nickel, Katharina A1 - Grathwohl, Denise A1 - Leicht, Hans‐Benno A1 - Rosenwald, Andreas A1 - Einsele, Hermann A1 - Rasche, Leo A1 - Kortüm, Martin T1 - Obinutuzumab and venetoclax induced complete remission in a patient with ibrutinib‐resistant non‐nodal leukemic mantle cell lymphoma JF - European Journal of Haematology N2 - We herein report the case of a 73‐year‐old male patient who was diagnosed with leukemic non‐nodal MCL. This patient had received six cycles of bendamustine, which resulted in a transient remission, and a second‐line therapy with ibrutinib, which unfortunately failed to induce remission. We started a treatment with single‐agent obinutuzumab at a dose of 20 mg on day 1, 50 mg on day 2‐4, 330 mg on day 5, and 1000 mg on day 6. The laboratory analysis showed a rapid decrease of leukocyte count. Four weeks later, we repeated the treatment with obinutuzumab at a dose of 1000 mg q4w and started a therapy with venetoclax at a dose of 400 mg qd, which could be increased to 800 mg qd from the third cycle. This combination therapy was well tolerated. The patient achieved a complete remission (CR) after three cycles of obinutuzumab and venetoclax. To date, the patient has a progression‐free survival of 17 months under ongoing obinutuzumab maintenance q4w. This is the first report about obinutuzumab and venetoclax induced CR in rituximab‐intolerant patient with an ibrutinib‐resistant MCL. This case suggests that obinutuzumab‐ and venetoclax‐based combination therapy might be salvage therapy in patients with ibrutinib‐resistant MCL. KW - mantle cell lymphoma KW - obinutuzumab KW - venetoclax Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215513 VL - 104 IS - 4 SP - 352 EP - 355 ER -