TY - JOUR A1 - Kiener, Mirjam A1 - Chen, Lanpeng A1 - Krebs, Markus A1 - Grosjean, Joȅl A1 - Klima, Irena A1 - Kalogirou, Charis A1 - Riedmiller, Hubertus A1 - Kneitz, Burkhard A1 - Thalmann, George N. A1 - Snaar-Jagalska, Ewa A1 - Spahn, Martin A1 - Kruithof-de Julio, Marianna A1 - Zoni, Eugenio T1 - miR-221-5p regulates proliferation and migration in human prostate cancer cells and reduces tumor growth in vivo JF - BMC Cancer N2 - Background Despite latest advances in prostate cancer (PCa) therapy, PCa remains the third-leading cause of cancer-related death in European men. Dysregulation of microRNAs (miRNAs), small non-coding RNA molecules with gene expression regulatory function, has been reported in all types of epithelial and haematological cancers. In particular, miR-221-5p alterations have been reported in PCa. Methods miRNA expression data was retrieved from a comprehensive publicly available dataset of 218 PCa patients (GSE21036) and miR-221-5p expression levels were analysed. The functional role of miR-221-5p was characterised in androgen- dependent and androgen- independent PCa cell line models (C4–2 and PC-3M-Pro4 cells) by miR-221-5p overexpression and knock-down experiments. The metastatic potential of highly aggressive PC-3M-Pro4 cells overexpressing miR-221-5p was determined by studying extravasation in a zebrafish model. Finally, the effect of miR-221-5p overexpression on the growth of PC-3M-Pro4luc2 cells in vivo was studied by orthotopic implantation in male Balb/cByJ nude mice and assessment of tumor growth. Results Analysis of microRNA expression dataset for human primary and metastatic PCa samples and control normal adjacent benign prostate revealed miR-221-5p to be significantly downregulated in PCa compared to normal prostate tissue and in metastasis compared to primary PCa. Our in vitro data suggest that miR-221-5p overexpression reduced PCa cell proliferation and colony formation. Furthermore, miR-221-5p overexpression dramatically reduced migration of PCa cells, which was associated with differential expression of selected EMT markers. The functional changes of miR-221-5p overexpression were reversible by the loss of miR-221-5p levels, indicating that the tumor suppressive effects were specific to miR-221-5p. Additionally, miR-221-5p overexpression significantly reduced PC-3M-Pro4 cell extravasation and metastasis formation in a zebrafish model and decreased tumor burden in an orthotopic mouse model of PCa. Conclusions Together these data strongly support a tumor suppressive role of miR-221-5p in the context of PCa and its potential as therapeutic target. KW - prostate cancer KW - miR-221-5p KW - proliferation KW - migration KW - tumor suppressor miRNA Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325762 VL - 19 ER - TY - JOUR A1 - Eckhardt, Carolin A1 - Sbiera, Iuliu A1 - Krebs, Markus A1 - Sbiera, Silviu A1 - Spahn, Martin A1 - Kneitz, Burkhard A1 - Joniau, Steven A1 - Fassnacht, Martin A1 - Kübler, Hubert A1 - Weigand, Isabel A1 - Kroiss, Matthias T1 - High expression of Sterol-O-Acyl transferase 1 (SOAT1), an enzyme involved in cholesterol metabolism, is associated with earlier biochemical recurrence in high risk prostate cancer JF - Prostate Cancer and Prostatic Diseases N2 - Background Prostate cancer (PCa) is the most frequent cancer in men. The prognosis of PCa is heterogeneous with many clinically indolent tumors and rare highly aggressive cases. Reliable tissue markers of prognosis are lacking. Active cholesteryl ester synthesis has been associated with prostate cancer aggressiveness. Sterol-O-Acyl transferases (SOAT) 1 and 2 catalyze cholesterol esterification in humans. Objective To investigate the value of SOAT1 and SOAT2 tissue expression as prognostic markers in high risk PCa. Patients and Methods Formalin-fixed paraffin-embedded tissue samples from 305 high risk PCa cases treated with radical prostatectomy were analyzed for SOAT1 and SOAT2 protein expression by semi-quantitative immunohistochemistry. The Kaplan-Meier method and Cox proportional hazards modeling were used to compare outcome. Main Outcome Measure Biochemical recurrence (BCR) free survival. Results SOAT1 expression was high in 73 (25%) and low in 219 (75%; not evaluable: 13) tumors. SOAT2 was highly expressed in 40 (14%) and at low levels in 249 (86%) samples (not evaluable: 16). By Kaplan-Meier analysis, we found significantly shorter median BCR free survival of 93 months (95% confidence interval 23.6-123.1) in patients with high SOAT1 vs. 134 months (112.6-220.2, Log-rank p < 0.001) with low SOAT1. SOAT2 expression was not significantly associated with BCR. After adjustment for age, preoperative PSA, tumor stage, Gleason score, resection status, lymph node involvement and year of surgery, high SOAT1 but not SOAT2 expression was associated with shorter BCR free survival with a hazard ratio of 2.40 (95% CI 1.57-3.68, p < 0.001). Time to clinical recurrence and overall survival were not significantly associated with SOAT1 and SOAT2 expression CONCLUSIONS: SOAT1 expression is strongly associated with BCR free survival alone and after multivariable adjustment in high risk PCa. SOAT1 may serve as a histologic marker of prognosis and holds promise as a future treatment target. KW - prostate cancer KW - SOAT1 KW - cholesterol metabolism Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271819 SN - 1476-5608 VL - 25 IS - 3 ER -