TY - JOUR A1 - Bemm, Felix A1 - Becker, Dirk A1 - Larisch, Christina A1 - Kreuzer, Ines A1 - Escalante-Perez, Maria A1 - Schulze, Waltraud X. A1 - Ankenbrand, Markus A1 - Van de Weyer, Anna-Lena A1 - Krol, Elzbieta A1 - Al-Rasheid, Khaled A. A1 - Mithöfer, Axel A1 - Weber, Andreas P. A1 - Schultz, Jörg A1 - Hedrich, Rainer T1 - Venus flytrap carnivorous lifestyle builds on herbivore defense strategies JF - Genome Research N2 - Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition. KW - Dionaea-muscipula ellis KW - Plant utricularia-gibba KW - Programmed cell-death KW - Genomics data sets KW - RNA-SEQ data KW - Arabidopsis-thaliana KW - Jasmonate perception KW - Action potentials KW - Stress responses KW - Wonderful plants Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188799 VL - 26 IS - 6 ER - TY - JOUR A1 - Scherzer, Sönke A1 - Huang, Shouguang A1 - Iosip, Anda A1 - Kreuzer, Ines A1 - Yokawa, Ken A1 - Al-Rasheid, Khaled A. S. A1 - Heckmann, Manfred A1 - Hedrich, Rainer T1 - Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap JF - Scientific reports N2 - Plants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP). Here we asked how the Ca\(^{2+}\) wave and AP is initiated in the trigger hair and how it is feed into systemic trap calcium-electrical networks. When Dionaea muscipula trigger hairs matures and develop hapto-electric excitability the mechanosensitive anion channel DmMSL10/FLYC1 and voltage dependent SKOR type Shaker K\(^{+}\) channel are expressed in the sheering stress sensitive podium. The podium of the trigger hair is interface to the flytrap’s prey capture and processing networks. In the excitable state touch stimulation of the trigger hair evokes a rise in the podium Ca2+ first and before the calcium signal together with an action potential travel all over the trap surface. In search for podium ion channels and pumps mediating touch induced Ca\(^{2+}\) transients, we, in mature trigger hairs firing fast Ca\(^{2+}\) signals and APs, found OSCA1.7 and GLR3.6 type Ca\(^{2+}\) channels and ACA2/10 Ca\(^{2+}\) pumps specifically expressed in the podium. Like trigger hair stimulation, glutamate application to the trap directly evoked a propagating Ca\(^{2+}\) and electrical event. Given that anesthetics affect K\(^+\) channels and glutamate receptors in the animal system we exposed flytraps to an ether atmosphere. As result propagation of touch and glutamate induced Ca\(^{2+}\) and AP long-distance signaling got suppressed, while the trap completely recovered excitability when ether was replaced by fresh air. In line with ether targeting a calcium channel addressing a Ca\(^{2+}\) activated anion channel the AP amplitude declined before the electrical signal ceased completely. Ether in the mechanosensory organ did neither prevent the touch induction of a calcium signal nor this post stimulus decay. This finding indicates that ether prevents the touch activated, glr3.6 expressing base of the trigger hair to excite the capture organ. KW - biophysics KW - drug discovery KW - physiology KW - plan sciences Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300411 VL - 12 ER -