TY - JOUR A1 - Seif, Michelle A1 - Einsele, Hermann A1 - Löffler, Jürgen T1 - CAR T cells beyond cancer: hope for immunomodulatory therapy of infectious diseases JF - Frontiers in Immunology N2 - Infectious diseases are still a significant cause of morbidity and mortality worldwide. Despite the progress in drug development, the occurrence of microbial resistance is still a significant concern. Alternative therapeutic strategies are required for non-responding or relapsing patients. Chimeric antigen receptor (CAR) T cells has revolutionized cancer immunotherapy, providing a potential therapeutic option for patients who are unresponsive to standard treatments. Recently two CAR T cell therapies, Yescarta® (Kite Pharma/Gilead) and Kymriah® (Novartis) were approved by the FDA for the treatments of certain types of non-Hodgkin lymphoma and B-cell precursor acute lymphoblastic leukemia, respectively. The success of adoptive CAR T cell therapy for cancer has inspired researchers to develop CARs for the treatment of infectious diseases. Here, we review the main achievements in CAR T cell therapy targeting viral infections, including Human Immunodeficiency Virus, Hepatitis C Virus, Hepatitis B Virus, Human Cytomegalovirus, and opportunistic fungal infections such as invasive aspergillosis. KW - infectious diseases KW - mAb engineering KW - CAR T cells KW - HIV KW - HCV KW - CMV KW - invasive aspergillosis KW - HBV Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195596 SN - 1664-3224 VL - 10 IS - 2711 ER - TY - JOUR A1 - Dix, Andreas A1 - Czakai, Kristin A1 - Springer, Jan A1 - Fliesser, Mirjam A1 - Bonin, Michael A1 - Guthke, Reinhard A1 - Schmitt, Anna L. A1 - Einsele, Hermann A1 - Linde, Jörg A1 - Löffler, Jürgen T1 - Genome-Wide Expression Profiling Reveals S100B as Biomarker for Invasive Aspergillosis JF - Frontiers in Microbiology N2 - Invasive aspergillosis (IA) is a devastating opportunistic infection and its treatment constitutes a considerable burden for the health care system. Immunocompromised patients are at an increased risk for IA, which is mainly caused by the species Aspergillus fumigatus. An early and reliable diagnosis is required to initiate the appropriate antifungal therapy. However, diagnostic sensitivity and accuracy still needs to be improved, which can be achieved at least partly by the definition of new biomarkers. Besides the direct detection of the pathogen by the current diagnostic methods, the analysis of the host response is a promising strategy toward this aim. Following this approach, we sought to identify new biomarkers for IA. For this purpose, we analyzed gene expression profiles of hematological patients and compared profiles of patients suffering from IA with non-IA patients. Based on microarray data, we applied a comprehensive feature selection using a random forest classifier. We identified the transcript coding for the S100 calcium-binding protein B (S100B) as a potential new biomarker for the diagnosis of IA. Considering the expression of this gene, we were able to classify samples from patients with IA with 82.3% sensitivity and 74.6% specificity. Moreover, we validated the expression of S100B in a real-time reverse transcription polymerase chain reaction (RT-PCR) assay and we also found a down-regulation of S100B in A. fumigatus stimulated DCs. An influence on the IL1B and CXCL1 downstream levels was demonstrated by this S100B knockdown. In conclusion, this study covers an effective feature selection revealing a key regulator of the human immune response during IA. S100B may represent an additional diagnostic marker that in combination with the established techniques may improve the accuracy of IA diagnosis. KW - human biomarker KW - invasive aspergillosis KW - allogeneic stem cell transplantation KW - gene expression data KW - fungal infection Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165386 IS - 7 ER -