TY - JOUR A1 - Bold, Kevin A1 - Stolte, Matthias A1 - Shoyama, Kazutaka A1 - Krause, Ana‐Maria A1 - Schmiedel, Alexander A1 - Holzapfel, Marco A1 - Lambert, Christoph A1 - Würthner, Frank T1 - Macrocyclic Donor‐Acceptor Dyads Composed of Oligothiophene Half‐Cycles and Perylene Bisimides JF - Chemistry – A European Journal N2 - A series of donor‐acceptor (D−A) macrocyclic dyads consisting of an electron‐poor perylene bisimide (PBI) π‐scaffold bridged with electron‐rich α‐oligothiophenes bearing four, five, six and seven thiophene units between the two phenyl‐imide substituents has been synthesized and characterized by steady‐state UV/Vis absorption and fluorescence spectroscopy, cyclic and differential pulse voltammetry as well as transient absorption spectroscopy. Tying the oligothiophene strands in a conformationally fixed macrocyclic arrangement leads to a more rigid π‐scaffold with vibronic fine structure in the respective absorption spectra. Electrochemical analysis disclosed charged state properties in solution which are strongly dependent on the degree of rigidification within the individual macrocycle. Investigation of the excited state dynamics revealed an oligothiophene bridge size‐dependent fast charge transfer process for the macrocyclic dyads upon PBI subunit excitation. KW - donor-acceptor dyad KW - macrocycle KW - oligothiophene KW - perylene bisimide KW - photoinduced electron transfer Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276435 VL - 28 IS - 30 ER - TY - JOUR A1 - Hattori, Yohei A1 - Michail, Evripidis A1 - Schmiedel, Alexander A1 - Moos, Michael A1 - Holzapfel, Marco A1 - Krummenacher, Ivo A1 - Braunschweig, Holger A1 - Müller, Ulrich A1 - Pflaum, Jens A1 - Lambert, Christoph T1 - Luminescent Mono-, Di-, and Tri-radicals: Bridging Polychlorinated Triarylmethyl Radicals by Triarylamines and Triarylboranes JF - Chemistry - A European Journal N2 - Up to three polychlorinated pyridyldiphenylmethyl radicals bridged by a triphenylamine carrying electron withdrawing (CN), neutral (Me), or donating (OMe) groups were synthesized and analogous radicals bridged by tris(2,6‐dimethylphenyl)borane were prepared for comparison. All compounds were as stable as common closed‐shell organic compounds and showed significant fluorescence upon excitation. Electronic, magnetic, absorption, and emission properties were examined in detail, and experimental results were interpreted using DFT calculations. Oxidation potentials, absorption and emission energies could be tuned depending on the electron density of the bridges. The triphenylamine bridges mediated intramolecular weak antiferromagnetic interactions between the radical spins, and the energy difference between the high spin and low spin states was determined by temperature dependent ESR spectroscopy and DFT calculations. The fluorescent properties of all radicals were examined in detail and revealed no difference for high and low spin states which facilitates application of these dyes in two‐photon absorption spectroscopy and OLED devices. KW - density functional calculations KW - fluorescence KW - NIR OLED KW - radical KW - two-photon absorption Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208162 VL - 25 IS - 68 ER - TY - JOUR A1 - Harkin, David J. A1 - Broch, Katharina A1 - Schreck, Maximilian A1 - Ceyman, Harald A1 - Stoy, Andreas A1 - Yong, Chaw-Keong A1 - Nikolka, Mark A1 - McCulloch, Ian A1 - Stingelin, Natalie A1 - Lambert, Christoph A1 - Sirringhaus, Henning T1 - Decoupling charge transport and electroluminescence in a high mobility polymer semiconductor JF - Advanced Materials N2 - Fluorescence enhancement of a high-mobility polymer semiconductor is achieved via energy transfer to a higher fluorescence quantum yield squaraine dye molecule on 50 ps timescales. In organic light-emitting diodes, an order of magnitude enhancement of the external quantum efficiency is observed without reduction in the charge-carrier mobility resulting in radiances of up to 5 W str\(^{-1}\) m\(^{-2}\) at 800 nm. KW - Light-emitting diodes KW - Fiels-effect transistors KW - Energy transfer KW - Conjugated polymers KW - High performance KW - High efficiency KW - Perovskite KW - Amplification KW - Fluorescence KW - Emission Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187670 VL - 28 IS - 30 ER - TY - JOUR A1 - Mieczkowski, Mateusz A1 - Steinmetzger, Christian A1 - Bessi, Irene A1 - Lenz, Ann-Kathrin A1 - Schmiedel, Alexander A1 - Holzapfel, Marco A1 - Lambert, Christoph A1 - Pena, Vladimir A1 - Höbartner, Claudia T1 - Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine JF - Nature Communications N2 - Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer. KW - Fluorogenic RNA Aptamers KW - Synthetic Functional RNAs KW - Chili RNA Aptamer KW - Co-Crystal Structures of Chili RNA KW - RNA KW - Optical Spectroscopy KW - Structural Biology KW - X-ray Crystallography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254527 VL - 12 ER - TY - JOUR A1 - Turkin, Arthur A1 - Holzapfel, Marco A1 - Agarwal, Mohit A1 - Fischermeier, David A1 - Mitric, Roland A1 - Schweins, Ralf A1 - Gröhns, Franziska A1 - Lambert, Christoph T1 - Solvent Induced Helix Folding of Defined Indolenine Squaraine Oligomers JF - Chemistry—A European Journal N2 - A protecting group strategy was employed to synthesise a series of indolenine squaraine dye oligomers up to the nonamer. The longer oligomers show a distinct solvent dependence of the absorption spectra, that is, either a strong blue shift or a strong red shift of the lowest energy bands in the near infrared spectral region. This behaviour is explained by exciton coupling theory as being due to H- or J-type coupling of transition moments. The H-type coupling is a consequence of a helix folding in solvents with a small Hansen dispersity index. DOSY NMR, small angle neutron scattering (SANS), quantum chemical and force field calculations agree upon a helix structure with an unusually large pitch and open voids that are filled with solvent molecules, thereby forming a kind of clathrate. The thermodynamic parameters of the folding process were determined by temperature dependent optical absorption spectra. KW - UV/Vis spectroscopy KW - dye chemistry KW - solvent effects KW - superstructure KW - supramolecular folding Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256869 VL - 27 IS - 32 ER - TY - JOUR A1 - Bold, Kevin A1 - Stolte, Matthias A1 - Shoyama, Kazutaka A1 - Holzapfel, Marco A1 - Schmiedel, Alexander A1 - Lambert, Christoph A1 - Würthner, Frank T1 - Macrocyclic donor-acceptor dyads composed of a perylene bisimide dye surrounded by oligothiophene bridges JF - Angewandte Chemie Internationale Edition N2 - Two macrocyclic architectures comprising oligothiophene strands that connect the imide positions of a perylene bisimide (PBI) dye have been synthesized via a platinum-mediated cross-coupling strategy. The crystal structure of the double bridged PBI reveals all syn-arranged thiophene units that completely enclose the planar PBI chromophore via a 12-membered macrocycle. The target structures were characterized by steady-state UV/Vis absorption, fluorescence and transient absorption spectroscopy, as well as cyclic and differential pulse voltammetry. Both donor–acceptor dyads show ultrafast Förster Resonance Energy Transfer and photoinduced electron transfer, thereby leading to extremely low fluorescence quantum yields even in the lowest polarity cyclohexane solvent. KW - organic chemistry KW - photoinduced electron transfer KW - donor–acceptor dyads KW - macrocycles KW - oligothiophenes KW - perylenebisimide Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256569 VL - 61 IS - 1 ER - TY - JOUR A1 - Zhang, Fangyuan A1 - Radacki, Krzysztof A1 - Braunschweig, Holger A1 - Lambert, Christoph A1 - Ravat, Prince T1 - Zinc-[7]helicenocyanine and its discrete π-stacked homochiral Dimer JF - Angewandte Chemie International Edition N2 - In this communication, we demonstrate a novel approach to prepare a discrete dimer of chiral phthalocyanine (Pc) by exploiting the flexible molecular geometry of helicenes, which enables structural interlocking and strong aggregation tendency of Pcs. Synthesized [7]helicene-Pc hybrid molecular structure, zinc-[7]helicenocyanine (Zn-7HPc), exclusively forms a stable dimeric pair consisting of two homochiral molecules. The dimerization constants were estimated to be as high as 8.96×10\(^6\) M\(^{−1}\) and 3.42×107 M\(^{−1}\) in THF and DMSO, respectively, indicating remarkable stability of dimer. In addition, Zn\(^{-7}\)HPc exhibited chiral self-sorting behavior, which resulted in preferential formation of a homochiral dimer also in the racemic sample. Two phthalocyanine subunits in the dimeric form strongly communicate with each other as revealed by a large comproportionation constant and observation of an IV-CT band for the thermodynamically stable mixed-valence state. KW - organic chemistry KW - supramolecular assembly KW - chirality KW - helicenes KW - homochiral dimer KW - phthalocyanines Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256534 VL - 60 ER - TY - JOUR A1 - Kole, Goutam Kumar A1 - Košćak, Marta A1 - Amar, Anissa A1 - Majhen, Dragomira A1 - Božinović, Ksenija A1 - Brkljaca, Zlatko A1 - Ferger, Matthias A1 - Michail, Evripidis A1 - Lorenzen, Sabine A1 - Friedrich, Alexandra A1 - Krummenacher, Ivo A1 - Moos, Michael A1 - Braunschweig, Holger A1 - Boucekkine, Abdou A1 - Lambert, Christoph A1 - Halet, Jean‐François A1 - Piantanida, Ivo A1 - Müller‐Buschbaum, Klaus A1 - Marder, Todd B. T1 - Methyl Viologens of Bis‐(4’‐Pyridylethynyl)Arenes – Structures, Photophysical and Electrochemical Studies, and their Potential Application in Biology JF - Chemistry – A European Journal N2 - A series of bis‐(4’‐pyridylethynyl)arenes (arene=benzene, tetrafluorobenzene, and anthracene) were synthesized and their bis‐N‐methylpyridinium compounds were investigated as a class of π‐extended methyl viologens. Their structures were determined by single crystal X‐ray diffraction, and their photophysical and electrochemical properties (cyclic voltammetry), as well as their interactions with DNA/RNA were investigated. The dications showed bathochromic shifts in emission compared to the neutral compounds. The neutral compounds showed very small Stokes shifts, which are a little larger for the dications. All of the compounds showed very short fluorescence lifetimes (<4 ns). The neutral compound with an anthracene core has a quantum yield of almost unity. With stronger acceptors, the analogous bis‐N‐methylpyridinium compound showed a larger two‐photon absorption cross‐section than its neutral precursor. All of the dicationic compounds interact with DNA/RNA; while the compounds with benzene and tetrafluorobenzene cores bind in the grooves, the one with an anthracene core intercalates as a consequence of its large, condensed aromatic linker moiety, and it aggregates within the polynucleotide when in excess over DNA/RNA. Moreover, all cationic compounds showed highly specific CD spectra upon binding to ds‐DNA/RNA, attributed to the rare case of forcing the planar, achiral molecule into a chiral rotamer, and negligible toxicity toward human cell lines at ≤10 μM concentrations. The anthracene‐analogue exhibited intracellular accumulation within lysosomes, preventing its interaction with cellular DNA/RNA. However, cytotoxicity was evident at 1 μM concentration upon exposure to light, due to singlet oxygen generation within cells. These multi‐faceted features, in combination with its two‐photon absorption properties, suggest it to be a promising lead compound for development of novel light‐activated theranostic agents. KW - cell imaging KW - DNA/RNA binding KW - methyl viologen KW - singlet oxygen KW - two-photon absorption Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287126 VL - 28 IS - 40 ER - TY - JOUR A1 - Merz, Julia A1 - Dietz, Maximilian A1 - Vonhausen, Yvonne A1 - Wöber, Frederik A1 - Friedrich, Alexandra A1 - Sieh, Daniel A1 - Krummenacher, Ivo A1 - Braunschweig, Holger A1 - Moos, Michael A1 - Holzapfel, Marco A1 - Lambert, Christoph A1 - Marder, Todd B. T1 - Synthesis, Photophysical and Electronic Properties of New Red-to-NIR Emitting Donor-Acceptor Pyrene Derivatives JF - Chemistry - A European Journal N2 - We synthesized new pyrene derivatives with strong bis(para ‐methoxyphenyl)amine donors at the 2,7‐positions and n ‐azaacene acceptors at the K‐region of pyrene. The compounds possess a strong intramolecular charge transfer, leading to unusual properties such as emission in the red to NIR region (700 nm), which has not been reported before for monomeric pyrenes. Detailed photophysical studies reveal very long intrinsic lifetimes of >100 ns for the new compounds, which is typical for 2,7‐substituted pyrenes but not for K‐region substituted pyrenes. The incorporation of strong donors and acceptors leads to very low reduction and oxidation potentials, and spectroelectrochemical studies show that the compounds are on the borderline between localized Robin‐Day class‐II and delocalized Robin‐Day class‐III species. KW - orylation KW - K-region KW - luminescence KW - polycyclic aromatic hydrocarbons KW - redox Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207486 VL - 26 IS - 2 ER - TY - JOUR A1 - Ferger, Matthias A1 - Roger, Chantal A1 - Köster, Eva A1 - Rauch, Florian A1 - Lorenzen, Sabine A1 - Krummenacher, Ivo A1 - Friedrich, Alexandra A1 - Košćak, Marta A1 - Nestić, Davor A1 - Braunschweig, Holger A1 - Lambert, Christoph A1 - Piantanida, Ivo A1 - Marder, Todd B. T1 - Electron‐Rich EDOT Linkers in Tetracationic bis‐Triarylborane Chromophores: Influence on Water Stability, Biomacromolecule Sensing, and Photoinduced Cytotoxicity JF - Chemistry – A European Journal N2 - Three novel tetracationic bis‐triarylboranes with 3,4‐ethylenedioxythiophene (EDOT) linkers, and their neutral precursors, showed significant red‐shifted absorption and emission compared to their thiophene‐containing analogues, with one of the EDOT‐derivatives emitting in the NIR region. Only the EDOT‐linked trixylylborane tetracation was stable in aqueous solution, indicating that direct attachment of a thiophene or even 3‐methylthiophene to the boron atom is insufficient to provide hydrolytic stability in aqueous solution. Further comparative analysis of the EDOT‐linked trixylylborane tetracation and its bis‐thiophene analogue revealed efficient photo‐induced singlet oxygen production, with the consequent biological implications. Thus, both analogues bind strongly to ds‐DNA and BSA, very efficiently enter living human cells, accumulate in several different cytoplasmic organelles with no toxic effect but, under intense visible light irradiation, they exhibit almost instantaneous and very strong cytotoxic effects, presumably attributed to singlet oxygen production. Thus, both compounds are intriguing theranostic agents, whose intracellular and probably intra‐tissue location can be monitored by strong fluorescence, allowing switching on of the strong bioactivity by well‐focused visible light. KW - boranes KW - DNA/RNA sensors KW - fluorescent probes KW - singlet oxygen KW - theranostics Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287241 VL - 28 IS - 48 ER -