TY - JOUR A1 - Gonzalez‐Escamilla, Gabriel A1 - Muthuraman, Muthuraman A1 - Reich, Martin M. A1 - Koirala, Nabin A1 - Riedel, Christian A1 - Glaser, Martin A1 - Lange, Florian A1 - Deuschl, Günther A1 - Volkmann, Jens A1 - Groppa, Sergiu T1 - Cortical network fingerprints predict deep brain stimulation outcome in dystonia JF - Movement Disorders N2 - Background Deep brain stimulation (DBS) is an effective evidence‐based therapy for dystonia. However, no unequivocal predictors of therapy responses exist. We investigated whether patients optimally responding to DBS present distinct brain network organization and structural patterns. Methods From a German multicenter cohort of 82 dystonia patients with segmental and generalized dystonia who received DBS implantation in the globus pallidus internus, we classified patients based on the clinical response 3 years after DBS. Patients were assigned to the superior‐outcome group or moderate‐outcome group, depending on whether they had above or below 70% motor improvement, respectively. Fifty‐one patients met MRI‐quality and treatment response requirements (mean age, 51.3 ± 13.2 years; 25 female) and were included in further analysis. From preoperative MRI we assessed cortical thickness and structural covariance, which were then fed into network analysis using graph theory. We designed a support vector machine to classify subjects for the clinical response based on individual gray‐matter fingerprints. Results The moderate‐outcome group showed cortical atrophy mainly in the sensorimotor and visuomotor areas and disturbed network topology in these regions. The structural integrity of the cortical mantle explained about 45% of the DBS stimulation amplitude for optimal response in individual subjects. Classification analyses achieved up to 88% of accuracy using individual gray‐matter atrophy patterns to predict DBS outcomes. Conclusions The analysis of cortical integrity, informed by group‐level network properties, could be developed into independent predictors to identify dystonia patients who benefit from DBS. KW - brain networks KW - clinical outcome KW - deep brain stimulation KW - dystonia Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213532 VL - 34 IS - 10 SP - 1536 EP - 1545 ER - TY - THES A1 - Lange, Florian T1 - Entwicklung eines Großtiermodells zur Charakterisierung der Permeabilität von Fraktionierungsmembranen für die Lipoproteinapherese T1 - Characterization of Fractionation Membranes in an Animal Model of Double Filtration Lipoprotein Apheresis N2 - Technische Schwierigkeiten während der Lipidapherese beeinflussen die Fraktionatorperformance. Aus diesem Grund wurde ein Großtiermodell zur Charakterisierung neuartiger Plasmafraktionatormembranen entwickelt. Vier Schafe wurden im Rahmen einer randomisierten, kontrollierten "Cross-over"-Studie einer Doppelfiltrationsplasmapherese mit drei Varianten der neuartigen FractioPES-Membran unterzogen. Diese Varianten unterschieden sich bezüglich ihrer HDL-Siebkoeffizienten (SK) (FPESa, 0.30, FPESb, 0.26, and FPESc, 0.22). Getestet wurden diese gegen eine Kontroll-Fraktionatormembran (EVAL). Siebkoeffizienten und Reduktionsraten wurden bestimmt für LDL, HDL, Fibrinogen, IgG und Albumin. Im Vergleich zu EVAL (0.42 � 0.04 zu 0.74 � 0.08) und FPESa (0.36 � 0.06 zu 0.64 � 0.04) waren die SK für HDL niedriger (p < 0,05) von FPESc (0.30 � 0.04 to 0.49 � 0.10). Die SK für Fibrinogen waren höher mit EVAL (p < 0,05; 0.02 � 0.01 zu 0.40 � 0.08) im Vergleich zu FPESb (0.05 � 0.02 zu 0.26 � 0.34) und FPESc (0.01 � 0.01 to 0.21 � 0.16). Das Tiermodell unterschied somit die minimalen Unterschiede der Fraktionatormembranen. N2 - Technical problems during clinical lipid apheresis interfere with fractionator performance. Therefore, a large animal model was established to characterize a new plasma fractionation membrane. Four sheep were randomized, controlled, and crossover subjected to double filtration lipoprotein apheresis with three specimens of FractioPES having slightly different HDL sieving coefficients (SK) (FPESa, 0.30, FPESb, 0.26, and FPESc, 0.22) versus a control fractionator (EVAL). SK and reduction ratios were determined for LDL, HDL, fibrinogen, IgG, and albumin. Compared to EVAL (0.42 � 0.04 to 0.74 � 0.08) and FPESa (0.36 � 0.06 to 0.64 � 0.04), SK for HDL were lower (P < 0.05) with FPESc (0.30 � 0.04 to 0.49 � 0.10). Fibrinogen SK were higher (P < 0.05) with EVAL (0.02 � 0.01 to 0.40 � 0.08) compared to FPESb (0.05 � 0.02 to 0.26 � 0.34) and FPESc (0.01 � 0.01 to 0.21 � 0.16). No further differences were determined. The animal model distinguished between minor differences in fractionation membrane permeability, demonstrating equivalent sieving of FPESa and EVAL and slightly inferior permeability of FPESb and FPESc. KW - Cholesterin KW - Hypercholesterinämie KW - Apherese KW - Schaf KW - Lipoproteinapherese Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174236 ER - TY - JOUR A1 - Kremer, Naomi I. A1 - Pauwels, Rik W. J. A1 - Pozzi, Nicolò G. A1 - Lange, Florian A1 - Roothans, Jonas A1 - Volkmann, Jens A1 - Reich, Martin M. T1 - Deep Brain Stimulation for Tremor: Update on Long-Term Outcomes, Target Considerations and Future Directions JF - Journal of Clinical Medicine N2 - Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated. KW - deep brain stimulation KW - tremor KW - essential tremor KW - Parkinson’s disease KW - outcomes KW - clinical approach KW - target considerations KW - future directions Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244982 SN - 2077-0383 VL - 10 IS - 16 ER - TY - JOUR A1 - Lange, Florian A1 - Steigerwald, Frank A1 - Malzacher, Tobias A1 - Brandt, Gregor Alexander A1 - Odorfer, Thorsten Michael A1 - Roothans, Jonas A1 - Reich, Martin M. A1 - Fricke, Patrick A1 - Volkmann, Jens A1 - Matthies, Cordula A1 - Capetian, Philipp D. T1 - Reduced Programming Time and Strong Symptom Control Even in Chronic Course Through Imaging-Based DBS Programming JF - Frontiers in Neurology N2 - Objectives: Deep brain stimulation (DBS) programming is based on clinical response testing. Our clinical pilot trial assessed the feasibility of image-guided programing using software depicting the lead location in a patient-specific anatomical model. Methods: Parkinson's disease patients with subthalamic nucleus-DBS were randomly assigned to standard clinical-based programming (CBP) or anatomical-based (imaging-guided) programming (ABP) in an 8-week crossover trial. Programming characteristics and clinical outcomes were evaluated. Results: In 10 patients, both programs led to similar motor symptom control (MDS-UPDRS III) after 4 weeks (medicationOFF/stimulationON; CPB: 18.27 ± 9.23; ABP: 18.37 ± 6.66). Stimulation settings were not significantly different, apart from higher frequency in the baseline program than CBP (p = 0.01) or ABP (p = 0.003). Time spent in a program was not significantly different (CBP: 86.1 ± 29.82%, ABP: 88.6 ± 29.0%). Programing time was significantly shorter (p = 0.039) with ABP (19.78 ± 5.86 min) than CBP (45.22 ± 18.32). Conclusion: Image-guided DBS programming in PD patients drastically reduces programming time without compromising symptom control and patient satisfaction in this small feasibility trial. KW - directional deep brain stimulation KW - image-guided programming KW - subthalamic nucleus KW - chronic stimulation KW - randomized controlled double-blind study KW - Parkinson's disease Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249634 SN - 1664-2295 VL - 12 ER -