TY - JOUR A1 - Tutov, Anna A1 - Chen, Xinyu A1 - Werner, Rudolf A. A1 - Mühlig, Saskia A1 - Zimmermann, Thomas A1 - Nose, Naoko A1 - Koshino, Kazuhiro A1 - Lapa, Constantin A1 - Decker, Michael A1 - Higuchi, Takahiro T1 - Rationalizing the binding modes of PET radiotracers targeting the norepinephrine transporter JF - Pharmaceutics N2 - Purpose: A new PET radiotracer \(^{18}\)F-AF78 showing great potential for clinical application has been reported recently. It belongs to a new generation of phenethylguanidine-based norepinephrine transporter (NET)-targeting radiotracers. Although many efforts have been made to develop NET inhibitors as antidepressants, systemic investigations of the structure–activity relationships (SARs) of NET-targeting radiotracers have rarely been performed. Methods: Without changing the phenethylguanidine pharmacophore and 3-fluoropropyl moiety that is crucial for easy labeling, six new analogs of \(^{18}\)F-AF78 with different meta-substituents on the benzene-ring were synthesized and evaluated in a competitive cellular uptake assay and in in vivo animal experiments in rats. Computational modeling of these tracers was established to quantitatively rationalize the interaction between the radiotracers and NET. Results: Using non-radiolabeled reference compounds, a competitive cellular uptake assay showed a decrease in NET-transporting affinity from meta-fluorine to iodine (0.42 and 6.51 µM, respectively), with meta-OH being the least active (22.67 µM). Furthermore, in vivo animal studies with radioisotopes showed that heart-to-blood ratios agreed with the cellular experiments, with AF78(F) exhibiting the highest cardiac uptake. This result correlates positively with the electronegativity rather than the atomic radius of the meta-substituent. Computational modeling studies revealed a crucial influence of halogen substituents on the radiotracer–NET interaction, whereby a T-shaped π–π stacking interaction between the benzene-ring of the tracer and the amino acid residues surrounding the NET binding site made major contributions to the different affinities, in accordance with the pharmacological data. Conclusion: The SARs were characterized by in vitro and in vivo evaluation, and computational modeling quantitatively rationalized the interaction between radiotracers and the NET binding site. These findings pave the way for further evaluation in different species and underline the potential of AF78(F) for clinical application, e.g., cardiac innervation imaging or molecular imaging of neuroendocrine tumors. KW - positron emission tomography KW - norepinephrine transporter KW - sympathetic nervous system KW - structure–activity relationships KW - T-shaped π–π stacking Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303949 SN - 1999-4923 VL - 15 IS - 2 ER - TY - JOUR A1 - Toyama, Yoshitaka A1 - Werner, Rudolf A. A1 - Ruiz-Bedoya, Camilo A. A1 - Ordonez, Alvaro A. A1 - Takase, Kei A1 - Lapa, Constantin A1 - Jain, Sanjay K. A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Higuchi, Takahiro T1 - Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon JF - Theranostics N2 - In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with C-11, Ga-68, and F-18 have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology. KW - glomerular filtration rate KW - renal KW - kidney KW - renal function KW - positron emission tomography KW - nephrology KW - urology KW - molecular imaging KW - theranostics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260090 VL - 11 IS - 12 ER -