TY - JOUR A1 - Werner, Rudolf A1 - Wakabayashi, Hiroshi A1 - Bauer, Jochen A1 - Schütz, Claudia A1 - Zechmeister, Christina A1 - Hayakawa, Nobuyuki A1 - Javadi, Mehrbod S. A1 - Lapa, Constantin A1 - Jahns, Roland A1 - Ergün, Süleyman A1 - Jahns, Valerie A1 - Higuchi, Takahiro T1 - Longitudinal \(^{18}\)F-FDG PET imaging in a Rat Model of Autoimmune Myocarditis JF - European Heart Journal Cardiovascular Imaging N2 - Aims: Although mortality rate is very high, diagnosis of acute myocarditis remains challenging with conventional tests. We aimed to elucidate the potential role of longitudinal 2-Deoxy-2-\(^{18}\)F-fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography (PET) inflammation monitoring in a rat model of experimental autoimmune myocarditis. Methods and results: Autoimmune myocarditis was induced in Lewis rats by immunizing with porcine cardiac myosin emulsified in complete Freund’s adjuvant. Time course of disease was assessed by longitudinal \(^{18}\)F-FDG PET imaging. A correlative analysis between in- and ex vivo \(^{18}\)F-FDG signalling and macrophage infiltration using CD68 staining was conducted. Finally, immunohistochemistry analysis of the cell-adhesion markers CD34 and CD44 was performed at different disease stages determined by longitudinal \(^{18}\)F-FDG PET imaging. After immunization, myocarditis rats revealed a temporal increase in 18F-FDG uptake (peaked at week 3), which was followed by a rapid decline thereafter. Localization of CD68 positive cells was well correlated with in vivo \(^{18}\)F-FDG PET signalling (R\(^2\) = 0.92) as well as with ex vivo 18F-FDG autoradiography (R\(^2\) = 0.9, P < 0.001, respectively). CD44 positivity was primarily observed at tissue samples obtained at acute phase (i.e. at peak 18F-FDG uptake), while CD34-positive staining areas were predominantly identified in samples harvested at both sub-acute and chronic phases (i.e. at \(^{18}\)F-FDG decrease). Conclusion: \(^{18}\)F-FDG PET imaging can provide non-invasive serial monitoring of cardiac inflammation in a rat model of acute myocarditis. KW - positron emission tomography KW - Myokarditis KW - myocarditis KW - inflammation KW - 18F-FDG KW - PET KW - personalized treatment Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165601 SN - 2047-2404 ER - TY - CHAP A1 - Werner, Rudolf A1 - Chen, Xinyu A1 - Lapa, Constantin A1 - Robinson, Simon A1 - Higuchi, Takahiro T1 - Intracellular behavior of the novel sympathetic nerve agent \(^{18}\)F-LMI1195 T2 - Journal of Nuclear Cardiology N2 - No abstract available. KW - Herz KW - PET KW - sympathetic nerve KW - autonomic nervous system KW - 18F-LMI1195 KW - positron emission tomography KW - heart KW - cardiac Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161137 SN - 1071-3581 N1 - This is a post-peer-review, pre-copyedit version of an article published in J Nucl Cardiol. ISSN: 1071-3581. Supplement (2017) Aug;24;4: 1461-1496. The final authenticated version is available online at: http://dx.doi.org/10.1007/s12350-017-0984-y VL - 24 IS - 4 Supplement (2017) Aug ER - TY - JOUR A1 - Philipp-Abbrederis, Kathrin A1 - Herrmann, Ken A1 - Knop, Stefan A1 - Schottelius, Margret A1 - Eiber, Matthias A1 - Lückerath, Katharina A1 - Pietschmann, Elke A1 - Habringer, Stefan A1 - Gerngroß, Carlos A1 - Franke, Katharina A1 - Rudelius, Martina A1 - Schirbel, Andreas A1 - Lapa, Constantin A1 - Schwamborn, Kristina A1 - Steidle, Sabine A1 - Hartmann, Elena A1 - Rosenwald, Andreas A1 - Kropf, Saskia A1 - Beer, Ambros J A1 - Peschel, Christian A1 - Einsele, Hermann A1 - Buck, Andreas K A1 - Schwaiger, Markus A1 - Götze, Katharina A1 - Wester, Hans-Jürgen A1 - Keller, Ulrich T1 - In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma JF - EMBO Molecular Medicine N2 - CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases. KW - FDG PET/CT KW - cells KW - CXCR4/SDF-1 KW - CXCR4 KW - multiple myeloma KW - positron emission tomography KW - chemokine receptor KW - in vivo imaging KW - malignancies KW - involvement KW - microenvironment KW - survival KW - cancer KW - autologous transplantation KW - bone disease Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148738 VL - 7 IS - 4 ER - TY - JOUR A1 - Toyama, Yoshitaka A1 - Werner, Rudolf A. A1 - Ruiz-Bedoya, Camilo A. A1 - Ordonez, Alvaro A. A1 - Takase, Kei A1 - Lapa, Constantin A1 - Jain, Sanjay K. A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Higuchi, Takahiro T1 - Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon JF - Theranostics N2 - In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with C-11, Ga-68, and F-18 have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology. KW - glomerular filtration rate KW - renal KW - kidney KW - renal function KW - positron emission tomography KW - nephrology KW - urology KW - molecular imaging KW - theranostics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260090 VL - 11 IS - 12 ER - TY - JOUR A1 - Lückerath, Katharina A1 - Lapa, Constantin A1 - Albert, Christa A1 - Herrmann, Ken A1 - Jörg, Gerhard A1 - Samnick, Samuel A1 - Einsele, Herrmann A1 - Knop, Stefan A1 - Buck, Andreas K. T1 - \(^{11}\)C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment in multiple myeloma JF - Oncotarget N2 - Multiple myeloma (MM) remains an essentially incurable hematologic malignancy. However, new treatment modalities and novel drugs have been introduced and thus additional tools for therapy monitoring are increasingly needed. Therefore, we evaluated the radiotracers \(^{11}\)C-Methionine (paraprotein-biosynthesis) and \(^{18}\)F-FDG (glucose-utilization) for monitoring response to anti-myeloma-therapy and outcome prediction. Influence of proteasome-inhibition on radiotracer-uptake of different MM cell-lines and patient-derived CD138\(^{+}\) plasma cells was analyzed and related to tumor-biology. Mice xenotransplanted with MM. 1S tumors underwent MET- and FDG-\(\mu\)PET. Tumor-to-background ratios before and after 24 h, 8 and 15 days treatment with bortezomib were correlated to survival. Treatment reduced both MET and FDG uptake; changes in tracer-retention correlated with a switch from high to low CD138-expression. In xenotransplanted mice, MET-uptake significantly decreased by 30-79% as early as 24 h after bortezomib injection. No significant differences were detected thus early with FDG. This finding was confirmed in patient-derived MM cells. Importantly, early reduction of MET-but not FDG-uptake correlated with improved survival and reduced tumor burden in mice. Our results suggest that MET is superior to FDG in very early assessment of response to anti-myeloma-therapy. Early changes in MET-uptake have predictive potential regarding response and survival. MET-PET holds promise to individualize therapies in MM in future. KW - positron emission tomography KW - imaging techniques KW - experience KW - \(^{11}\)C-Methionine-PET KW - treatment response KW - molecular imaging KW - multiple myeloma KW - management KW - \(^{18}\)F-FDG PET/CT KW - bone disease KW - stem-cell transplantation KW - esophagogastric junction Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148688 VL - 6 IS - 10 ER -