TY - JOUR A1 - Toyama, Yoshitaka A1 - Werner, Rudolf A. A1 - Ruiz-Bedoya, Camilo A. A1 - Ordonez, Alvaro A. A1 - Takase, Kei A1 - Lapa, Constantin A1 - Jain, Sanjay K. A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Higuchi, Takahiro T1 - Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon JF - Theranostics N2 - In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with C-11, Ga-68, and F-18 have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology. KW - glomerular filtration rate KW - renal KW - kidney KW - renal function KW - positron emission tomography KW - nephrology KW - urology KW - molecular imaging KW - theranostics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260090 VL - 11 IS - 12 ER - TY - JOUR A1 - Kosmala, Aleksander A1 - Serfling, Sebastian E. A1 - Dreher, Niklas A1 - Lindner, Thomas A1 - Schirbel, Andreas A1 - Lapa, Constantin A1 - Higuchi, Takahiro A1 - Buck, Andreas K. A1 - Weich, Alexander A1 - Werner, Rudolf A. T1 - Associations between normal organs and tumor burden in patients imaged with fibroblast activation protein inhibitor-directed positron emission tomography JF - Cancers N2 - (1) Background: We aimed to quantitatively investigate [\(^{68}\)Ga]Ga-FAPI-04 uptake in normal organs and to assess a relationship with the extent of FAPI-avid tumor burden. (2) Methods: In this single-center retrospective analysis, thirty-four patients with solid cancers underwent a total of 40 [\(^{68}\)Ga]Ga-FAPI-04 PET/CT scans. Mean standardized uptake values (SUV\(_{mean}\)) for normal organs were established by placing volumes of interest (VOIs) in the heart, liver, spleen, pancreas, kidneys, and bone marrow. Total tumor burden was determined by manual segmentation of tumor lesions with increased uptake. For tumor burden, quantitative assessment included maximum SUV (SUV\(_{max}\)), tumor volume (TV), and fractional tumor activity (FTA = TV × SUV\(_{mean}\)). Associations between uptake in normal organs and tumor burden were investigated by applying Spearman's rank correlation coefficient. (3) Results: Median SUV\(_{mean}\) values were 2.15 in the pancreas (range, 1.05–9.91), 1.42 in the right (range, 0.57–3.06) and 1.41 in the left kidney (range, 0.73–2.97), 1.2 in the heart (range, 0.46–2.59), 0.86 in the spleen (range, 0.55–1.58), 0.65 in the liver (range, 0.31–2.11), and 0.57 in the bone marrow (range, 0.26–0.94). We observed a trend towards significance for uptake in the myocardium and tumor-derived SUV\(_{max}\) (ρ = 0.29, p = 0.07) and TV (ρ = −0.30, p = 0.06). No significant correlation was achieved for any of the other organs: SUV\(_{max}\) (ρ ≤ 0.1, p ≥ 0.42), TV (ρ ≤ 0.11, p ≥ 0.43), and FTA (ρ ≤ 0.14, p ≥ 0.38). In a sub-analysis exclusively investigating patients with high tumor burden, significant correlations of myocardial uptake with tumor SUV\(_{max}\) (ρ = 0.44; p = 0.03) and tumor-derived FTA with liver uptake (ρ = 0.47; p = 0.02) were recorded. (4) Conclusions: In this proof-of-concept study, quantification of [\(^{68}\)Ga]Ga-FAPI-04 PET showed no significant correlation between normal organs and tumor burden, except for a trend in the myocardium. Those preliminary findings may trigger future studies to determine possible implications for treatment with radioactive FAP-targeted drugs, as higher tumor load or uptake may not lead to decreased doses in the majority of normal organs. KW - PET KW - [\(^{68}\)Ga]Ga-FAPI KW - theranostics KW - radioligand therapy KW - fibroblast activation protein Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275154 SN - 2072-6694 VL - 14 IS - 11 ER - TY - JOUR A1 - Serfling, Sebastian E. A1 - Lapa, Constantin A1 - Dreher, Niklas A1 - Hartrampf, Philipp E. A1 - Rowe, Steven P. A1 - Higuchi, Takahiro A1 - Schirbel, Andreas A1 - Weich, Alexander A1 - Hahner, Stefanie A1 - Fassnacht, Martin A1 - Buck, Andreas K. A1 - Werner, Rudolf A. T1 - Impact of tumor burden on normal organ distribution in patients imaged with CXCR4-targeted [\(^{68}\)Ga]Ga-PentixaFor PET/CT JF - Molecular Imaging and Biology N2 - Background CXCR4-directed positron emission tomography/computed tomography (PET/CT) has been used as a diagnostic tool in patients with solid tumors. We aimed to determine a potential correlation between tumor burden and radiotracer accumulation in normal organs. Methods Ninety patients with histologically proven solid cancers underwent CXCR4-targeted [\(^{68}\)Ga]Ga-PentixaFor PET/CT. Volumes of interest (VOIs) were placed in normal organs (heart, liver, spleen, bone marrow, and kidneys) and tumor lesions. Mean standardized uptake values (SUV\(_{mean}\)) for normal organs were determined. For CXCR4-positive tumor burden, maximum SUV (SUV\(_{max}\)), tumor volume (TV), and fractional tumor activity (FTA, defined as SUV\(_{mean}\) x TV), were calculated. We used a Spearman's rank correlation coefficient (ρ) to derive correlative indices between normal organ uptake and tumor burden. Results Median SUV\(_{mean}\) in unaffected organs was 5.2 for the spleen (range, 2.44 – 10.55), 3.27 for the kidneys (range, 1.52 – 17.4), followed by bone marrow (1.76, range, 0.84 – 3.98), heart (1.66, range, 0.88 – 2.89), and liver (1.28, range, 0.73 – 2.45). No significant correlation between SUV\(_{max}\) in tumor lesions (ρ ≤ 0.189, P ≥ 0.07), TV (ρ ≥ -0.204, P ≥ 0.06) or FTA (ρ ≥ -0.142, P ≥ 0.18) with the investigated organs was found. Conclusions In patients with solid tumors imaged with [\(^{68}\)Ga]Ga-PentixaFor PET/CT, no relevant tumor sink effect was noted. This observation may be of relevance for therapies with radioactive and non-radioactive CXCR4-directed drugs, as with increasing tumor burden, the dose to normal organs may remain unchanged. KW - CXCR4 KW - C-X-C motif chemokine receptor 4 KW - PET KW - [68Ga]PentixaFor KW - [177Lu]/[90Y]PentixaTher KW - theranostics KW - endoradiotherapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324622 VL - 24 IS - 4 ER -