TY - JOUR A1 - Eissler, Cristoph A1 - Werner, Rudolf A. A1 - Arias-Loza, Paula A1 - Nose, Naoko A1 - Chen, Xinyu A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro T1 - The number of frames on ECG-gated \(^{18}\)F-FDG small animal PET has a significant impact on LV systolic and diastolic functional parameters JF - Molecular Imaging N2 - Objectives. This study is aimed at investigating the impact of frame numbers in preclinical electrocardiogram- (ECG-) gated \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F-FDG) positron emission tomography (PET) on systolic and diastolic left ventricular (LV) parameters in rats. Methods. \(^{18}\)F-FDG PET imaging using a dedicated small animal PET system with list mode data acquisition and continuous ECG recording was performed in diabetic and control rats. The list-mode data was sorted and reconstructed with different numbers of frames (4, 8, 12, and 16) per cardiac cycle into tomographic images. Using an automatic ventricular edge detection software, left ventricular (LV) functional parameters, including ejection fraction (EF), end-diastolic (EDV), and end-systolic volume (ESV), were calculated. Diastolic variables (time to peak filling (TPF), first third mean filling rate (1/3 FR), and peak filling rate (PFR)) were also assessed. Results. Significant differences in multiple parameters were observed among the reconstructions with different frames per cardiac cycle. EDV significantly increased by numbers of frames (353.8 & PLUSMN; 57.7 mu l*, 380.8 & PLUSMN; 57.2 mu l*, 398.0 & PLUSMN; 63.1 mu l*, and 444.8 & PLUSMN; 75.3 mu l at 4, 8, 12, and 16 frames, respectively; *P < 0.0001 vs. 16 frames), while systolic (EF) and diastolic (TPF, 1/3 FR and PFR) parameters were not significantly different between 12 and 16 frames. In addition, significant differences between diabetic and control animals in 1/3 FR and PFR in 16 frames per cardiac cycle were observed (P < 0.005), but not for 4, 8, and 12 frames. Conclusions. Using ECG-gated PET in rats, measurements of cardiac function are significantly affected by the frames per cardiac cycle. Therefore, if you are going to compare those functional parameters, a consistent number of frames should be used. KW - Myocardial-perfusion SPECT KW - left-ventricular function KW - ejection fraction KW - MRI Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265778 VL - 2021 ER - TY - JOUR A1 - Hoffmann, Jan V. A1 - Janssen, Jan P. A1 - Kanno, Takayuki A1 - Shibutani, Takayuki A1 - Onoguchi, Masahisa A1 - Lapa, Constantin A1 - Grunz, Jan-Peter A1 - Buck, Andreas K. A1 - Higuchi, Takahiro T1 - Performance evaluation of fifth-generation ultra-high-resolution SPECT system with two stationary detectors and multi-pinhole imaging JF - EJNMMI Physics N2 - Background Small-animal single-photon emission computed tomography (SPECT) systems with multi-pinhole collimation and large stationary detectors have advantages compared to systems with moving small detectors. These systems benefit from less labour-intensive maintenance and quality control as fewer prone parts are moving, higher accuracy for focused scans and maintaining high resolution with increased sensitivity due to focused pinholes on the field of view. This study aims to investigate the performance of a novel ultra-high-resolution scanner with two-detector configuration (U-SPECT5-E) and to compare its image quality to a conventional micro-SPECT system with three stationary detectors (U-SPECT\(^+\)). Methods The new U-SPECT5-E with two stationary detectors was used for acquiring data with \(^{99m}\)Tc-filled point source, hot-rod and uniformity phantoms to analyse sensitivity, spatial resolution, uniformity and contrast-to-noise ratio (CNR). Three dedicated multi-pinhole mouse collimators with 75 pinholes each and 0.25-, 0.60- and 1.00-mm pinholes for extra ultra-high resolution (XUHR-M), general-purpose (GP-M) and ultra-high sensitivity (UHS-M) imaging were examined. For CNR analysis, four different activity ranges representing low- and high-count settings were investigated for all three collimators. The experiments for the performance assessment were repeated with the same GP-M collimator in the three-detector U-SPECT\(^+\) for comparison. Results Peak sensitivity was 237 cps/MBq (XUHR-M), 847 cps/MBq (GP-M), 2054 cps/MBq (UHS-M) for U-SPECT5-E and 1710 cps/MBq (GP-M) for U-SPECT\(^+\). In the visually analysed sections of the reconstructed mini Derenzo phantoms, rods as small as 0.35 mm (XUHR-M), 0.50 mm (GP-M) for the two-detector as well as the three-detector SPECT and 0.75 mm (UHS-M) were resolved. Uniformity for maximum resolution recorded 40.7% (XUHR-M), 29.1% (GP-M, U-SPECT5-E), 16.3% (GP-M, U-SPECT\(^+\)) and 23.0% (UHS-M), respectively. UHS-M reached highest CNR values for low-count images; for rods smaller than 0.45 mm, acceptable CNR was only achieved by XUHR-M. GP-M was superior for imaging rods sized from 0.60 to 1.50 mm for intermediate activity concentrations. U-SPECT5-E and U-SPECT+ both provided comparable CNR. Conclusions While uniformity and sensitivity are negatively affected by the absence of a third detector, the investigated U-SPECT5-E system with two stationary detectors delivers excellent spatial resolution and CNR comparable to the performance of an established three-detector-setup. KW - small-animal imaging KW - SPECT KW - mouse KW - ollimator KW - post-reconstruction filtering Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230361 VL - 7 ER - TY - JOUR A1 - Weich, Alexander A1 - Werner, Rudolf A. A1 - Buck, Andreas K. A1 - Hartrampf, Philipp E. A1 - Serfling, Sebastian E. A1 - Scheurlen, Michael A1 - Wester, Hans-Jürgen A1 - Meining, Alexander A1 - Kircher, Stefan A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Kircher, Malte T1 - CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas JF - Diagnostics N2 - We aimed to elucidate the diagnostic potential of the C-X-C motif chemokine receptor 4 (CXCR4)-directed positron emission tomography (PET) tracer \(^{68}\)Ga-Pentixafor in patients with poorly differentiated neuroendocrine carcinomas (NEC), relative to the established reference standard \(^{18}\)F-FDG PET/computed tomography (CT). In our database, we retrospectively identified 11 treatment-naïve patients with histologically proven NEC, who underwent \(^{18}\)F-FDG and CXCR4-directed PET/CT for staging and therapy planning. The images were analyzed on a per-patient and per-lesion basis and compared to immunohistochemical staining (IHC) of CXCR4 from PET-guided biopsies. \(^{68}\)Ga-Pentixafor visualized tumor lesions in 10/11 subjects, while \(^{18}\)F-FDG revealed sites of disease in all 11 patients. Although weak to moderate CXCR4 expression could be corroborated by IHC in 10/11 cases, \(^{18}\)F-FDG PET/CT detected significantly more tumor lesions (102 vs. 42; total lesions, n = 107; p < 0.001). Semi-quantitative analysis revealed markedly higher 18F-FDG uptake as compared to \(^{68}\)Ga-Pentixafor (maximum and mean standardized uptake values (SUV) and tumor-to-background ratios (TBR) of cancerous lesions, SUVmax: 12.8 ± 9.8 vs. 5.2 ± 3.7; SUVmean: 7.4 ± 5.4 vs. 3.1 ± 3.2, p < 0.001; and, TBR 7.2 ± 7.9 vs. 3.4 ± 3.0, p < 0.001). Non-invasive imaging of CXCR4 expression in NEC is inferior to the reference standard \(^{18}\)F-FDG PET/CT. KW - CXCR4 KW - NET KW - NEC KW - 68Ga-Pentixafor KW - 18F-FDG Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234231 SN - 2075-4418 VL - 11 IS - 4 ER - TY - JOUR A1 - Janssen, Jan P. A1 - Hoffmann, Jan V. A1 - Kanno, Takayuki A1 - Nose, Naoko A1 - Grunz, Jan-Peter A1 - Onoguchi, Masahisa A1 - Chen, Xinyu A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro T1 - Capabilities of multi-pinhole SPECT with two stationary detectors for in vivo rat imaging JF - Scientific Reports N2 - We aimed to investigate the image quality of the U-SPECT5/CT E-Class a micro single-photon emission computed tomography (SPECT) system with two large stationary detectors for visualization of rat hearts and bones using clinically available \(^{99m}\)Tc-labelled tracers. Sensitivity, spatial resolution, uniformity and contrast-to-noise ratio (CNR) of the small-animal SPECT scanner were investigated in phantom studies using an ultra-high-resolution rat and mouse multi-pinhole collimator (UHR-RM). Point source, hot-rod, and uniform phantoms with \(^{99m}\)Tc-solution were scanned for high-count performance assessment and count levels equal to animal scans, respectively. Reconstruction was performed using the similarity-regulated ordered-subsets expectation maximization (SROSEM) algorithm with Gaussian smoothing. Rats were injected with similar to 100 MBq [\(^{99m}\)TcTc-MIBI or similar to 150 MBq [\(^{99m}\)Tc]Tc-HMDP and received multi-frame micro-SPECT imaging after tracer distribution. Animal scans were reconstructed for three different acquisition times and post-processed with different sized Gaussian filters. Following reconstruction, CNR was calculated and image quality evaluated by three independent readers on a five-point scale from 1="very poor" to 5="very good". Point source sensitivity was 567 cps/MBq and radioactive rods as small as 1.2 mm were resolved with the UHR-RM collimator. Collimator-dependent uniformity was 55.5%. Phantom CNR improved with increasing rod size, filter size and activity concentration. Left ventricle and bone structures were successfully visualized in rat experiments. Image quality was strongly affected by the extent of post-filtering, whereas scan time did not have substantial influence on visual assessment. Good image quality was achieved for resolution range greater than 1.8 mm in bone and 2.8 mm in heart. The recently introduced small animal SPECT system with two stationary detectors and UHR-RM collimator is capable to provide excellent image quality in heart and bone scans in a rat using standardized reconstruction parameters and appropriate post-filtering. However, there are still challenges in achieving maximum system resolution in the sub-millimeter range with in vivo settings under limited injection dose and acquisition time. KW - small animal SPECT KW - HMDP hydroxymethylene diphosphonate KW - skeletal KW - quality KW - scanner Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230616 VL - 10 ER -