TY - INPR A1 - Werner, Rudolf A. A1 - Andree, Christian A1 - Javadi, Mehrbod S. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Rowe, Steven P. A1 - Pienta, Kenneth J. T1 - A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging T2 - Urology - The Gold Journal N2 - No abstract available. KW - 18F-DCFPyL KW - Virchow Node KW - PSMA-PET KW - Virchow Node KW - Positron Emission Tomography KW - Prostate Cancer KW - PET Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161103 SN - 0090-4295 N1 - This is the accepted manuscript of Rudolf Werner, Christian Andree, Mehrbod S. Javadi, Constantin Lapa, Andreas K. Buck, Takahiro Higuchi, Martin G. Pomper, Michael A.Gorin, Steven P.Rowe, Kenneth J. Pienta: A Voice From the Past: Re-Discovering the Virchow Node with PSMA-Targeted 18F-DCFPyL PET Imaging. Published in Urology 117(2018), p. 18-21. https://doi.org/10.1016/j.urology.2018.03.030 N1 - Die finale Version dieses Artikels steht unter https://doi.org/10.1016/j.urology.2018.03.030 oder https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-164632 open access zur Verfügung. ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Andree, Christian A1 - Javadi, Mehrbod S. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Rowe, Steven P. A1 - Pienta, Kenneth J. T1 - A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging JF - Urology - The Gold Journal N2 - No abstract available. KW - 18F-DCFPyL KW - PET KW - PSMA-PET KW - Positron Emission Tomography KW - Prostate Cancer KW - Virchow Node Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164632 SN - 0090-4295 VL - 117 ER - TY - JOUR A1 - Eissler, Cristoph A1 - Werner, Rudolf A. A1 - Arias-Loza, Paula A1 - Nose, Naoko A1 - Chen, Xinyu A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro T1 - The number of frames on ECG-gated \(^{18}\)F-FDG small animal PET has a significant impact on LV systolic and diastolic functional parameters JF - Molecular Imaging N2 - Objectives. This study is aimed at investigating the impact of frame numbers in preclinical electrocardiogram- (ECG-) gated \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F-FDG) positron emission tomography (PET) on systolic and diastolic left ventricular (LV) parameters in rats. Methods. \(^{18}\)F-FDG PET imaging using a dedicated small animal PET system with list mode data acquisition and continuous ECG recording was performed in diabetic and control rats. The list-mode data was sorted and reconstructed with different numbers of frames (4, 8, 12, and 16) per cardiac cycle into tomographic images. Using an automatic ventricular edge detection software, left ventricular (LV) functional parameters, including ejection fraction (EF), end-diastolic (EDV), and end-systolic volume (ESV), were calculated. Diastolic variables (time to peak filling (TPF), first third mean filling rate (1/3 FR), and peak filling rate (PFR)) were also assessed. Results. Significant differences in multiple parameters were observed among the reconstructions with different frames per cardiac cycle. EDV significantly increased by numbers of frames (353.8 & PLUSMN; 57.7 mu l*, 380.8 & PLUSMN; 57.2 mu l*, 398.0 & PLUSMN; 63.1 mu l*, and 444.8 & PLUSMN; 75.3 mu l at 4, 8, 12, and 16 frames, respectively; *P < 0.0001 vs. 16 frames), while systolic (EF) and diastolic (TPF, 1/3 FR and PFR) parameters were not significantly different between 12 and 16 frames. In addition, significant differences between diabetic and control animals in 1/3 FR and PFR in 16 frames per cardiac cycle were observed (P < 0.005), but not for 4, 8, and 12 frames. Conclusions. Using ECG-gated PET in rats, measurements of cardiac function are significantly affected by the frames per cardiac cycle. Therefore, if you are going to compare those functional parameters, a consistent number of frames should be used. KW - Myocardial-perfusion SPECT KW - left-ventricular function KW - ejection fraction KW - MRI Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265778 VL - 2021 ER - TY - JOUR A1 - Chen, Xinyu A1 - Werner, Rudolf A. A1 - Javadi, Mehrbod S. A1 - Maya, Yoshifumi A1 - Decker, Michael A1 - Lapa, Constantin A1 - Herrmann, Ken A1 - Higuchi, Takahiro T1 - Radionuclide imaging of neurohormonal system of the heart JF - Theranostics N2 - Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included. KW - SPECT KW - radiotracer KW - heart failure KW - cardiac neurohormonal system KW - nuclear cardiology KW - PET Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149205 VL - 5 IS - 6 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Chen, Xinyu A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro T1 - Moving into the Next Era of PET Myocardial Perfusion Imaging - Introduction of Novel \(^{18}\)F-labeled Tracers JF - The International Journal of Cardiovascular Imaging N2 - The heart failure (HF) epidemic continues to rise with coronary artery disease (CAD) as one of its main causes. Novel concepts for risk stratification to guide the referring cardiologist towards revascularization procedures are of significant value. Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) agents has demonstrated high accuracy for the detection of clinically relevant stenoses. With positron emission tomography (PET) becoming more widely available, mainly due to its diagnostic performance in oncology, perfusion imaging with that modality is more practical than in the past and overcomes existing limitations of SPECT MPI. Advantages of PET include more reliable quantification of absolute myocardial blood flow, the routine use of computed tomography for attenuation correction, a higher spatiotemporal resolution and a higher count sensitivity. Current PET radiotracers such as rubidium-82 (half-life, 76 sec), oxygen-15 water (2 min) or nitrogen-13 ammonia (10 min) are labeled with radionuclides with very short half-lives, necessitating that stress imaging is performed under pharmacological vasodilator stress instead of exercise testing. However, with the introduction of novel 18F-labeled MPI PET radiotracers (half-life, 110 min), the intrinsic advantages of PET can be combined with exercise testing. Additional advantages of those radiotracers include, but are not limited to: potentially improved cost-effectiveness due to the use of pre-existing delivery systems and superior imaging qualities, mainly due to the shortest positron range among available PET MPI probes. In the present review, widely used PET MPI radiotracers will be reviewed and potential novel 18F-labeled perfusion radiotracers will be discussed. KW - heart failure with mid-range ejection fraction KW - Positronenemissionstomografie KW - coronary artery disease KW - precision medicine KW - positron emission tomography KW - PET KW - SPECT KW - myocardial perfusion imaging KW - MPI KW - 18F-flurpiridaz KW - 18FFBnTP KW - HFmrEF Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169134 SN - 1569-5794 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Ilhan, Harun A1 - Lehner, Sebastian A1 - Papp, László A1 - Zsótér, Norbert A1 - Schatka, Imke A1 - Muegge, Dirk O. A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro A1 - Buck, Andreas K. A1 - Bartenstein, Peter A1 - Bengel, Frank A1 - Essler, Markus A1 - Lapa, Constantin A1 - Bundschuh, Ralph A. T1 - Pre-therapy Somatostatin-Receptor-Based Heterogeneity Predicts Overall Survival in Pancreatic Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy JF - Molecular Imaging and Biology N2 - Purpose: Early identification of aggressive disease could improve decision-support in pancreatic neuroendocrine tumor (pNET) patients prior to peptide receptor radionuclide therapy (PRRT). The prognostic value of intratumoral textural features (TF) determined by baseline somatostatin receptor (SSTR)-PET before PRRT was analyzed. Procedures: 31 patients with G1/G2 pNET were enrolled (G2, n=23/31). Prior to PRRT with [\(^{177}\)Lu]DOTATATE (mean, 3.6 cycles), baseline SSTR-PET/CT was performed. By segmentation of 162 (median per patient, 5) metastases, intratumoral TF were computed. The impact of conventional PET parameters (SUV\(_{mean/max}\)), imaging-based TF as well as clinical parameters (Ki67, CgA) for prediction of both progression-free (PFS) and overall survival (OS) after PRRT was evaluated. Results: Within a median follow-up of 3.7y, tumor progression was detected in 21 patients (median, 1.5y) and 13/31 deceased (median, 1.9y). In ROC analysis, the TF Entropy, reflecting derangement on a voxel-by-voxel level, demonstrated predictive capability for OS (cutoff=6.7, AUC=0.71, p=0.02). Of note, increasing Entropy could predict a longer survival (>6.7, OS=2.5y, 17/31), whereas less voxel-based derangement portended inferior outcome (<6.7, OS=1.9y, 14/31). These findings were supported in a G2 subanalysis (>6.9, OS=2.8y, 9/23 vs. <6.9, OS=1.9y, 14/23). Kaplan-Meier analysis revealed a significant distinction between high- and low-risk groups using Entropy (n=31, p<0.05). For those patients below the ROC-derived threshold, the relative risk of death after PRRT was 2.73 (n=31, p=0.04). Ki67 was negatively associated with PFS (p=0.002); however, SUVmean/max failed in prognostication (n.s.). Conclusions: In contrast to conventional PET parameters, assessment of intratumoral heterogeneity demonstrated superior prognostic performance in pNET patients undergoing PRRT. This novel PET-based strategy of outcome prediction prior to PRRT might be useful for patient risk stratification. KW - tumor heterogeneity KW - Positronen-Emissions-Tomografie KW - PET KW - PET/CT KW - pancreas KW - SSTR KW - [177Lu]-DOTATATE/-DOTATOC KW - [68Ga] KW - neuroendocrine tumor Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167168 SN - 1536-1632 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Bundschuh, Lena A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro A1 - Weich, Alexander A1 - Sheikhbahaei, Sara A1 - Pienta, Kenneth J. A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Lapa, Constantin A1 - Rowe, Steven P. T1 - MI-RADS: Molecular Imaging Reporting and Data Systems – A Generalizable Framework for Targeted Radiotracers with Theranostic Implications JF - Annals of Nuclear Medicine N2 - Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader’s confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems. KW - PET KW - Positronen-Emissions-Tomografie KW - prostate cancer KW - neuroendocrine tumor KW - prostate-specific membrane antigen (PSMA) KW - somatostatin receptor (SSTR) KW - positron emission tomography KW - theranostics KW - standardization KW - RADS KW - reporting and data systems KW - personalized medicine Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166995 SN - 0914-7187 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Higuchi, Takahiro A1 - Javadi, Mehrbod S. A1 - Rowe, Steven P. A1 - Zsótér, Norbert A1 - Kroiss, Matthias A1 - Fassnacht, Martin A1 - Buck, Andreas K. A1 - Kreissl, Michael C. A1 - Lapa, Constantin T1 - Volumetric and Texture Analysis of Pretherapeutic \(^{18}\)F-FDG PET can Predict Overall Survival in Medullary Thyroid Cancer Patients Treated with Vandetanib JF - Endocrine N2 - Purpose: The metabolically most active lesion in 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) PET/CT can predict progression-free survival (PFS) in patients with medullary thyroid carcinoma (MTC) starting treatment with the tyrosine kinase inhibitor (TKI) vandetanib. However, this metric failed in overall survival (OS) prediction. In the present proof of concept study, we aimed to explore the prognostic value of intratumoral textural features (TF) as well as volumetric parameters (total lesion glycolysis, TLG) derived by pre-therapeutic \(^{18}\)F-FDG PET. Methods: Eighteen patients with progressive MTC underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after vandetanib initiation. By manual segmentation of the tumor burden at baseline and follow-up PET, intratumoral TF and TLG were computed. The ability of TLG, imaging-based TF, and clinical parameters (including age, tumor marker doubling times, prior therapies and RET (rearranged during transfection) mutational status) for prediction of both PFS and OS were evaluated. Results: The TF Complexity and the volumetric parameter TLG obtained at baseline prior to TKI initiation successfully differentiated between low- and high-risk patients. Complexity allocated 10/18 patients to the high-risk group with an OS of 3.3y (vs. low-risk group, OS=5.3y, 8/18, AUC=0.78, P=0.03). Baseline TLG designated 11/18 patients to the high-risk group (OS=3.5y vs. low-risk group, OS=5y, 7/18, AUC=0.83, P=0.005). The Hazard Ratio for cancer-related death was 6.1 for Complexity (TLG, 9.5). Among investigated clinical parameters, the age at initiation of TKI treatment reached significance for PFS prediction (P=0.02, OS, n.s.). Conclusions: The TF Complexity and the volumetric parameter TLG are both independent parameters for OS prediction. KW - personalized medicine KW - Positronen-Emissions-Tomografie KW - medullary thyroid carcinoma KW - tyrosine kinase inhibitor KW - TKI KW - vandetanib KW - 18F-FDG KW - positron emission tomography KW - 2-deoxy-2-(18F)fluoro-D-glucose KW - PET Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167910 SN - 1355-008X ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Eissler, Christoph A1 - Hayakawa, Nobuyuki A1 - Arias-Loza, Paula A1 - Wakabayashi, Hiroshi A1 - Javadi, Mehrbod S. A1 - Chen, Xinyu A1 - Shinaji, Tetsuya A1 - Lapa, Constantin A1 - Pelzer, Theo A1 - Higuchi, Takahiro T1 - Left Ventricular Diastolic Dysfunction in a Rat Model of Diabetic Cardiomyopathy using ECG-gated \(^{18}\)F-FDG PET JF - Scientific Reports N2 - In diabetic cardiomyopathy, left ventricular (LV) diastolic dysfunction is one of the earliest signs of cardiac involvement prior to the definitive development of heart failure (HF). We aimed to explore the LV diastolic function using electrocardiography (ECG)-gated \(^{18}\)F-fluorodeoxyglucose positron emission tomography (\(^{18}\)F-FDG PET) imaging beyond the assessment of cardiac glucose utilization in a diabetic rat model. ECG-gated \(^{18}\)F-FDG PET imaging was performed in a rat model of type 2 diabetes (ZDF fa/fa) and ZL control rats at age of 13 weeks (n=6, respectively). Under hyperinsulinemic-euglycemic clamp to enhance cardiac activity, \(^{18}\)F-FDG was administered and subsequently, list-mode imaging using a dedicated small animal PET system with ECG signal recording was performed. List-mode data were sorted and reconstructed into tomographic images of 16 frames per cardiac cycle. Left ventricular functional parameters (systolic: LV ejection fraction (EF), heart rate (HR) vs. diastolic: peak filling rate (PFR)) were obtained using an automatic ventricular edge detection software. No significant difference in systolic function could be obtained (ZL controls vs. ZDF rats: LVEF, 62.5±4.2 vs. 59.4±4.5%; HR: 331±35 vs. 309±24 bpm; n.s., respectively). On the contrary, ECG-gated PET imaging showed a mild but significant decrease of PFR in the diabetic rats (ZL controls vs. ZDF rats: 12.1±0.8 vs. 10.2±1 Enddiastolic Volume/sec, P<0.01). Investigating a diabetic rat model, ECG-gated \(^{18}\)F-FDG PET imaging detected LV diastolic dysfunction while systolic function was still preserved. This might open avenues for an early detection of HF onset in high-risk type 2 diabetes before cardiac symptoms become apparent. KW - diabetic cardiomyopathy KW - personalized treatment KW - precision medicine KW - ZDF rats KW - ECG KW - PET KW - \(^{18}\)F-fluorodeoxyglucose KW - \(^{18}\)F-FDG KW - diabetes Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171765 VL - 8 IS - 17631 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Weich, Alexander A1 - Kircher, Malte A1 - Solnes, Lilja B. A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Rowe, Steven A1 - Lapa, Constantin T1 - The theranostic promise for neuroendocrine tumors in the late 2010s – Where do we stand, where do we go? JF - Theranostics N2 - More than 25 years after the first peptide receptor radionuclide therapy (PRRT), the concept of somatostatin receptor (SSTR)-directed imaging and therapy for neuroendocrine tumors (NET) is seeing rapidly increasing use. To maximize the full potential of its theranostic promise, efforts in recent years have expanded recommendations in current guidelines and included the evaluation of novel theranostic radiotracers for imaging and treatment of NET. Moreover, the introduction of standardized reporting framework systems may harmonize PET reading, address pitfalls in interpreting SSTR-PET/CT scans and guide the treating physician in selecting PRRT candidates. Notably, the concept of PRRT has also been applied beyond oncology, e.g. for treatment of inflammatory conditions like sarcoidosis. Future perspectives may include the efficacy evaluation of PRRT compared to other common treatment options for NET, novel strategies for closer monitoring of potential side effects, the introduction of novel radiotracers with beneficial pharmacodynamic and kinetic properties or the use of supervised machine learning approaches for outcome prediction. This article reviews how the SSTR-directed theranostic concept is currently applied and also reflects on recent developments that hold promise for the future of theranostics in this context. KW - theranostics KW - Positronen-Emissions-Tomografie KW - PRRT KW - somatostatin receptor KW - peptide receptor radionuclide therapy KW - neuroendocrine tumor Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170264 VL - 8 IS - 22 ER -