TY - JOUR A1 - Dubail, Johanne A1 - Huber, Céline A1 - Chantepie, Sandrine A1 - Sonntag, Stephan A1 - Tüysüz, Beyhan A1 - Mihci, Ercan A1 - Gordon, Christopher T. A1 - Steichen-Gersdorf, Elisabeth A1 - Amiel, Jeanne A1 - Nur, Banu A1 - Stolte-Dijkstra, Irene A1 - van Eerde, Albertien M. A1 - van Gassen, Koen L. A1 - Breugem, Corstiaan C. A1 - Stegmann, Alexander A1 - Lekszas, Caroline A1 - Maroofian, Reza A1 - Karimiani, Ehsan Ghayoor A1 - Bruneel, Arnaud A1 - Seta, Nathalie A1 - Munnich, Arnold A1 - Papy-Garcia, Dulce A1 - De La Dure-Molla, Muriel A1 - Cormier-Daire, Valérie T1 - SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects JF - Nature Communications N2 - Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta. SLC10A7 encodes a 10-transmembrane-domain transporter located at the plasma membrane. Functional studies in vitro demonstrate that SLC10A7 mutations reduce SLC10A7 protein expression. We generate a Slc10a7−/− mouse model, which displays shortened long bones, growth plate disorganization and tooth enamel anomalies, recapitulating the human phenotype. Furthermore, we identify decreased heparan sulfate levels in Slc10a7−/− mouse cartilage and patient fibroblasts. Finally, we find an abnormal N-glycoprotein electrophoretic profile in patient blood samples. Together, our findings support the involvement of SLC10A7 in glycosaminoglycan synthesis and specifically in skeletal development. KW - bone development KW - disease genetics KW - medical genetics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226377 VL - 9 ER - TY - JOUR A1 - Lekszas, Caroline A1 - Nanda, Indrajit A1 - Vona, Barbara A1 - Böck, Julia A1 - Ashrafzadeh, Farah A1 - Donyadideh, Nahid A1 - Ebrahimzadeh, Farnoosh A1 - Ahangari, Najmeh A1 - Maroofian, Reza A1 - Karimiani, Ehsan Ghayoor A1 - Haaf, Thomas T1 - Unbalanced segregation of a paternal t(9;11)(p24.3;p15.4) translocation causing familial Beckwith-Wiedemann syndrome: a case report JF - BMC Medical Genomics N2 - Background The vast majority of cases with Beckwith-Wiedemann syndrome (BWS) are caused by a molecular defect in the imprinted chromosome region 11p15.5. The underlying mechanisms include epimutations, uniparental disomy, copy number variations, and structural rearrangements. In addition, maternal loss-of-function mutations in CDKN1C are found. Despite growing knowledge on BWS pathogenesis, up to 20% of patients with BWS phenotype remain without molecular diagnosis. Case presentation Herein, we report an Iranian family with two females affected with BWS in different generations. Bisulfite pyrosequencing revealed hypermethylation of the H19/IGF2: intergenic differentially methylated region (IG DMR), also known as imprinting center 1 (IC1) and hypomethylation of the KCNQ1OT1: transcriptional start site (TSS) DMR (IC2). Array CGH demonstrated an 8 Mb duplication on chromosome 11p15.5p15.4 (205,827-8,150,933) and a 1 Mb deletion on chromosome 9p24.3 (209,020-1,288,114). Chromosome painting revealed that this duplication-deficiency in both patients is due to unbalanced segregation of a paternal reciprocal t(9;11)(p24.3;p15.4) translocation. Conclusions This is the first report of a paternally inherited unbalanced translocation between the chromosome 9 and 11 short arms underlying familial BWS. Copy number variations involving the 11p15.5 region are detected by the consensus diagnostic algorithm. However, in complex cases which do not only affect the BWS region itself, characterization of submicroscopic chromosome rearrangements can assist to estimate the recurrence risk and possible phenotypic outcomes. KW - Familial Beckwith-Wiedemann syndrome KW - copy number variation KW - duplication-deficiency KW - genomic imprinting KW - submicroscopic chromosome rearrangement KW - reciprocal translocation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200422 VL - 12 ER -